Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 173682, 16 pages
http://dx.doi.org/10.1155/2013/173682
Review Article

Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

1Department of Agricultural Resources and Environmental Sciences, College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
3Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
4Department of Life Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
5Department of Horticulture, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Received 16 July 2012; Revised 4 October 2012; Accepted 30 October 2012

Academic Editor: Margarita Rodríguez Kessler

Copyright © 2013 Lin-Tong Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. R. von Uexküll E and Mutert, “Global extent, development and economic impact of acid soils,” in Plant-Soil Interactions at Low PH: Principles and Management, R. A. Date, N. J. Grundon, and G. E. Raymet, Eds., pp. 5–19, Kluwer Academic, Dordrecht, The Netherlands, 1995. View at Google Scholar
  2. J. H. Guo, X. J. Liu, Y. Zhang et al., “Significant acidification in major chinese croplands,” Science, vol. 327, no. 5968, pp. 1008–1010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. C. D. Foy, R. L. Chaney, and M. C. White, “The physiology of metal toxicity in plants,” Annual Review of Plant Physiology, vol. 29, pp. 511–566, 1978. View at Publisher · View at Google Scholar
  4. T. B. Kinraide, “Identity of the rhizotoxic aluminium species,” Plant and Soil, vol. 134, no. 1, pp. 167–178, 1991. View at Publisher · View at Google Scholar · View at Scopus
  5. L. V. Kochian, “Cellular mechanisms of aluminum toxicity and resistance in plants,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 46, pp. 237–260, 1995. View at Google Scholar · View at Scopus
  6. L. V. Kochian, O. A. Hoekenga, and M. A. Piñeros, “How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency,” Annual Review of Plant Biology, vol. 55, pp. 459–493, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. M. Pellet, L. A. Papernik, and L. V. Kochian, “Multiple aluminum-resistance mechanisms in wheat roles of root apical phosphate and malate exudation,” Plant Physiology, vol. 112, no. 2, pp. 591–597, 1996. View at Google Scholar · View at Scopus
  8. P. S. Kidd, M. Llugany, C. Poschenrieder, B. Gunsé, and J. Barceló, “The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.),” Journal of Experimental Botany, vol. 52, no. 359, pp. 1339–1352, 2001. View at Google Scholar · View at Scopus
  9. J. F. Ma, “Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants,” International Review of Cytology, vol. 264, pp. 225–252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. F. Ma, “Role of organic acids in detoxification of aluminum in higher plants,” Plant and Cell Physiology, vol. 41, no. 4, pp. 383–390, 2000. View at Google Scholar · View at Scopus
  11. J. F. Ma, “Physiological mechanisms of Al resistance in higher plants,” Soil Science and Plant Nutrition, vol. 51, no. 5, pp. 609–612, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. F. Ma, P. R. Ryan, and E. Delhaize, “Aluminium tolerance in plants and the complexing role of organic acids,” Trends in Plant Science, vol. 6, no. 6, pp. 273–278, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. F. Ma and J. Furukawa, “Recent progress in the research of external Al detoxification in higher plants: a minireview,” Journal of Inorganic Biochemistry, vol. 97, no. 1, pp. 46–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Delhaize, J. F. Ma, and P. R. Ryan, “Transcriptional regulation of aluminium tolerance genes,” Trends in Plant Science, vol. 17, no. 6, pp. 341–348, 2012. View at Publisher · View at Google Scholar
  15. C. Inostroza-Blancheteau, Z. Rengel, M. Alberdi et al., “Molecular and physiological strategies to increase aluminum resistance in plants,” Molecular Biology Reports, vol. 39, no. 3, pp. 2069–2079, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Kitagawa, T. Morishita, Y. Tachibana, H. Namai, and Y. Ohta, “Differential aluminum resistance of wheat varieties and organic acid secretion,” Japanese Journal of Soil Science and Plant Nutrition, vol. 57, no. 4, pp. 352–358, 1986. View at Google Scholar
  17. Z. Zhao, J. F. Ma, K. Sato, and K. Takeda, “Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.),” Planta, vol. 217, no. 5, pp. 794–800, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. Pellet, D. L. Grunes, and L. V. Kochian, “Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.),” Planta, vol. 196, no. 4, pp. 788–795, 1995. View at Google Scholar · View at Scopus
  19. S. J. Zheng, J. F. Ma, and H. Matsumoto, “Continuous secretion of organic acids is related to aluminium resistance during relatively long-term exposure to aluminium stress,” Physiologia Plantarum, vol. 103, no. 2, pp. 209–214, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. Zheng, J. F. Ma, and H. Matsumoto, “High aluminum resistance in buckwheat: I. Al-induced specific secretion of oxalic acid from root tips,” Plant Physiology, vol. 117, no. 3, pp. 745–751, 1998. View at Google Scholar · View at Scopus
  21. X. F. Li, J. F. Ma, and H. Matsumoto, “Pattern of aluminum-induced secretion of organic acids differs between rye and wheat,” Plant Physiology, vol. 123, no. 4, pp. 1537–1544, 2000. View at Google Scholar · View at Scopus
  22. Z. M. Yang, M. Sivaguru, W. J. Horst, and H. Matsumoto, “Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max),” Physiologia Plantarum, vol. 110, no. 1, pp. 72–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Liao, H. Wan, J. Shaff, X. Wang, X. Yan, and L. V. Kochian, “Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system,” Plant Physiology, vol. 141, no. 2, pp. 674–684, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Deng, K. Luo, Z. Li, Y. Yang, N. Hu, and Y. Wu, “Overexpression of c mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance,” Planta, vol. 230, no. 2, pp. 355–365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. V. Kochian, M. A. Piñeros, and O. A. Hoekenga, “The physiology, genetics and molecular biology of plant aluminum resistance and toxicity,” Plant and Soil, vol. 274, no. 1-2, pp. 175–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. F. Ma, S. Taketa, and Z. M. Yang, “Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale,” Plant Physiology, vol. 122, no. 3, pp. 687–694, 2000. View at Google Scholar · View at Scopus
  27. J. F. You, Y. F. He, J. L. Yang, and S. J. Zheng, “A comparison of aluminum resistance among Polygonum species originating on strongly acidic and neutral soils,” Plant and Soil, vol. 276, no. 1-2, pp. 143–151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Osawa and K. Kojima, “Citrate-release-mediated aluminum resistance is coupled to the inducible expression of mitochondrial citrate synthase gene in Paraserianthes falcataria,” Tree Physiology, vol. 26, no. 5, pp. 565–574, 2006. View at Google Scholar · View at Scopus
  29. X. Y. Dong, R. F. Shen, R. F. Chen, Z. L. Zhu, and J. F. Ma, “Secretion of malate and citrate from roots is related to high Al-resistance in Lespedeza bicolor,” Plant and Soil, vol. 306, no. 1-2, pp. 139–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. L. T. Yang, H. X. Jiang, N. Tang, and L. S. Chen, “Mechanisms of aluminum-tolerance in two species of citrus: secretion of organic acid anions and immobilization of aluminum by phosphorus in roots,” Plant Science, vol. 180, no. 3, pp. 521–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. L. T. Yang, H. X. Jiang, Y. P. Qi, and L. S. Chen, “Differential expression of genes involved in alternative glycolytic pathways, phosphorus scavenging and recycling in response to aluminum and phosphorus interactions in citrus roots,” Molecular Biology Reports, vol. 39, no. 5, pp. 6353–6366, 2012. View at Publisher · View at Google Scholar
  32. P. R. Ryan, J. M. Ditomaso, and L. V. Kochian, “Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap,” Journal of Experimental Botany, vol. 44, no. 2, pp. 437–446, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Sivaguru and W. J. Horst, “The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize,” Plant Physiology, vol. 116, no. 1, pp. 155–163, 1998. View at Google Scholar · View at Scopus
  34. J. F. Ma, S. J. Zheng, and H. Matsumoto, “Specific secretion of citric acid induced by Al stress in Cassia tora L.,” Plant and Cell Physiology, vol. 38, no. 9, pp. 1019–1025, 1997. View at Google Scholar · View at Scopus
  35. J. L. Yang, S. J. Zheng, Y. F. He, and H. Matsumoto, “Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress,” Journal of Experimental Botany, vol. 56, no. 414, pp. 1197–1203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. J. L. Yang, L. Zhang, Y. Y. Li, J. F. You, P. Wu, and S. J. Zheng, “Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean (Vigna umbellata) roots,” Annals of Botany, vol. 97, no. 4, pp. 579–584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. R. Ryan, E. Delhaize, and P. J. Randall, “Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots,” Planta, vol. 196, no. 1, pp. 103–110, 1995. View at Google Scholar · View at Scopus
  38. Y. Kobayashi, O. A. Hoekenga, H. Itoh et al., “Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis,” Plant Physiology, vol. 145, no. 3, pp. 843–852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. Yang, S. J. Zheng, Y. F. He, J. F. You, L. Zhang, and X. H. Yu, “Comparative studies on the effect of a protein-synthesis inhibitor on aluminium-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L. roots,” Plant, Cell and Environment, vol. 29, no. 2, pp. 240–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Delhaize, D. M. Hebb, and P. R. Ryan, “Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux,” Plant Physiology, vol. 125, no. 4, pp. 2059–2067, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. M. Yang, H. Nian, M. Sivaguru, S. Tanakamaru, and H. Matsumoto, “Characterization of aluminium-induced citrate secretion in aluminium-tolerant soybean (Glycine max) plants,” Physiologia Plantarum, vol. 113, no. 1, pp. 64–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Nian, Z. Yang, H. Huang, X. Yan, and H. Matsumoto, “Citrate secretion induced by aluminum stress may not be a key mechanism responsible for differential aluminum tolerance of some soybean genotypes,” Journal of Plant Nutrition, vol. 27, no. 11, pp. 2047–2066, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. M. A. Piñeros, J. E. Shaff, H. S. Manslank, V. M. Carvalho Alves, and L. V. Kochian, “Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study,” Plant Physiology, vol. 137, no. 1, pp. 231–241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. S. J. Zheng, J. L. Yang, Y. F. Yun et al., “Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat,” Plant Physiology, vol. 138, no. 1, pp. 297–303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Wenzl, G. M. Patiño, A. L. Chaves, J. E. Mayer, and I. M. Rao, “The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices,” Plant Physiology, vol. 125, no. 3, pp. 1473–1484, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Ishikawa, T. Wagatsuma, R. Sasaki, and P. Ofei-Manu, “Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species,” Soil Science and Plant Nutrition, vol. 46, no. 3, pp. 751–758, 2000. View at Google Scholar · View at Scopus
  47. J. L. Yang, L. Zhang, and S. J. Zheng, “Aluminum-activated oxalate secretion does not associate with internal content among some oxalate accumulators,” Journal of Integrative Plant Biology, vol. 50, no. 9, pp. 1103–1107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. N. Famoso, R. T. Clark, J. E. Shaff, E. Craft, S. R. McCouch, and L. V. Kochian, “Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms,” Plant Physiology, vol. 153, no. 4, pp. 1678–1691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J. L. Yang, X. F. Zhu, C. Zheng, Y. J. Zhang, and S. J. Zheng, “Genotypic differences in Al resistance and the role of cell-wall pectin in Al exclusion from the root apex in Fagopyrum tataricum,” Annals of Botany, vol. 107, no. 3, pp. 371–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. J. L. Yang, Y. Y. Li, Y. J. Zhang et al., “Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex,” Plant Physiology, vol. 146, no. 2, pp. 602–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. N. T. Nguyen, K. Nakabayashi, J. Thompson, and K. Fujita, “Role of exudation of organic acids and phosphate in aluminum tolerance of four tropical woody species,” Tree Physiology, vol. 23, no. 15, pp. 1041–1050, 2003. View at Google Scholar · View at Scopus
  52. O. A. Hoekenga, T. J. Vision, J. E. Shaff et al., “Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta x Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait,” Plant Physiology, vol. 132, no. 2, pp. 936–948, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. J. V. Magalhaes, J. Liu, C. T. Guimarães et al., “A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum,” Nature Genetics, vol. 39, no. 9, pp. 1156–1161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. J. F. Ma, S. J. Zheng, H. Matsumoto, and S. Hiradate, “Detoxifying aluminium with buckwheat,” Nature, vol. 390, no. 6660, pp. 569–570, 1997. View at Google Scholar · View at Scopus
  55. M. Schöttelndreier, M. M. Norddahl, L. Ström, and U. Falkengren-Grerup, “Organic acid exudation by wild herbs in response to elevated Al concentrations,” Annals of Botany, vol. 87, no. 6, pp. 769–775, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Kollmeier, P. Dietrich, C. S. Bauer, W. J. Horst, and R. Hedrich, “Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar,” Plant Physiology, vol. 126, no. 1, pp. 397–410, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Qin, Y. Hirano, and I. Brunner, “Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn,” Tree Physiology, vol. 27, no. 2, pp. 313–320, 2007. View at Google Scholar · View at Scopus
  58. V. M. Anoop, U. Basu, M. T. McCammon, L. McAlister-Henn, and G. J. Taylor, “Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase,” Plant Physiology, vol. 132, no. 4, pp. 2205–2217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Ligaba, H. Shen, K. Shibata, Y. Yamamoto, S. Tanakamaru, and H. Matsumoto, “The role of phosphorus in aluminium-induced citrate and malate exudation from rape (Brassica napus),” Physiologia Plantarum, vol. 120, no. 4, pp. 575–584, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Y. Li, Y. X. Yu, X. L. Tang, G. Z. Ling, M. H. Gu, and Q. C. Huang, “Studies on the mechanisms responsible for rye cultivar differences in Al resistance,” Plant Nutrition and Fertilizer Science, vol. 14, no. 6, pp. 1070–1075, 2008. View at Google Scholar
  61. S. C. Miyasaka, J. George Buta, R. K. Howell, and C. D. Foy, “Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid,” Plant Physiology, vol. 96, no. 3, pp. 737–743, 1991. View at Google Scholar · View at Scopus
  62. J. F. You, N. N. Hou, M. Y. Xu, H. M. Zhang, and Z. M. Yang, “Citrate transporters play an important role in regulating aluminum-induced citrate secretion in Glycine max,” Biologia Plantarum, vol. 54, no. 4, pp. 766–768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. X. F. Li, F. H. Zuo, G. Z. Ling et al., “Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes,” Plant and Soil, vol. 325, no. 1, pp. 219–229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. N. E. Saber, A. M. Abdel-Moneim, and S. Y. Barakat, “Role of organic acids in sunflower tolerance to heavy metals,” Biologia Plantarum, vol. 42, no. 1, pp. 65–73, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Ma and S. C. Miyasaka, “Oxalate exudation by Taro in response to Al,” Plant Physiology, vol. 118, no. 3, pp. 861–865, 1998. View at Google Scholar · View at Scopus
  66. J. L. Yang, X. F. Zhu, Y. X. Peng, C. Zheng, F. Ming, and S. J. Zheng, “Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots,” Planta, vol. 234, no. 2, pp. 281–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. W. H. Zhang, P. R. Ryan, and S. D. Tyerman, “Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots,” Plant Physiology, vol. 125, no. 3, pp. 1459–1472, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Delhaize, P. R. Ryan, and R. J. Randall, “Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices,” Plant Physiology, vol. 103, no. 3, pp. 695–702, 1993. View at Google Scholar · View at Scopus
  69. P. R. Ryan, M. Skerrett, G. P. Findlay, E. Delhaize, and S. D. Tyerman, “Aluminum activates an anion channel in the apical cells of wheat roots,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 12, pp. 6547–6552, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. L. A. Papernik and L. V. Kochian, “Possible involvement of AL-lnduced electrical signals in Al tolerance in wheat,” Plant Physiology, vol. 115, no. 2, pp. 657–667, 1997. View at Google Scholar · View at Scopus
  71. M. A. Piñeros and L. V. Kochian, “A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels,” Plant Physiology, vol. 125, no. 1, pp. 292–305, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. M. A. Piñeros, J. V. Magalhaes, V. M. Carvalho Alves, and L. V. Kochian, “The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize,” Plant Physiology, vol. 129, no. 3, pp. 1194–1206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Sasaki, Y. Yamamoto, B. Ezaki et al., “A wheat gene encoding an aluminum-activated malate transporter,” Plant Journal, vol. 37, no. 5, pp. 645–653, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Yamaguchi, T. Sasaki, M. Sivaguru et al., “Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1),” Plant and Cell Physiology, vol. 46, no. 5, pp. 812–816, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. M. A. Piñeros, G. M. A. Cançado, and L. V. Kochian, “Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: functional and structural implications,” Plant Physiology, vol. 147, no. 4, pp. 2131–2146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Ligaba, M. Katsuhara, P. R. Ryan, M. Shibasaka, and H. Matsumoto, “The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells,” Plant Physiology, vol. 142, no. 3, pp. 1294–1303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. O. A. Hoekenga, L. G. Maron, M. A. Piñeros et al., “AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 25, pp. 9738–9743, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Fontecha, J. Silva-Navas, C. Benito et al., “Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.),” Theoretical and Applied Genetics, vol. 114, no. 2, pp. 249–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Osawa and H. Matsumoto, “Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex,” Plant Physiology, vol. 126, no. 1, pp. 411–420, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Ligaba, L. Kochian, and M. Piñeros, “Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat,” Plant Journal, vol. 60, no. 3, pp. 411–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. A. Piñeros, G. M. A. Cançado, L. G. Maron, S. M. Lyi, M. Menossi, and L. V. Kochian, “Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1, an anion-selective transporter,” Plant Journal, vol. 53, no. 2, pp. 352–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Ligaba, L. Maron, J. Shaff, L. V. Kochian, and M. Piñeros, “Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux,” Plant Cell & Environment, vol. 35, no. 7, pp. 1185–1200, 2012. View at Publisher · View at Google Scholar
  83. P. Kovermann, S. Meyer, S. Hörtensteiner et al., “The Arabidopsis vacuolar malate channel is a member of the ALMT family,” Plant Journal, vol. 52, no. 6, pp. 1169–1180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Meyer, P. Mumm, D. Imes et al., “AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells,” Plant Journal, vol. 63, no. 6, pp. 1054–1062, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Meyer, J. Scholz-Starke, A. De Angeli et al., “Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation,” Plant Journal, vol. 67, no. 2, pp. 247–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. B. D. Gruber, P. R. Ryan, A. E. Richardson et al., “HvALMT1 from barley is involved in the transport of organic anions,” Journal of Experimental Botany, vol. 61, no. 5, pp. 1455–1467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. B. D. Gruber, E. Delhaize, A. E. Richardson et al., “Characterisation of HvALMT1 function in transgenic barley plants,” Functional Plant Biology, vol. 38, no. 2, pp. 163–175, 2011. View at Publisher · View at Google Scholar
  88. J. Furukawa, N. Yamaji, H. Wang et al., “An aluminum-activated citrate transporter in barley,” Plant and Cell Physiology, vol. 48, no. 8, pp. 1081–1091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Wang, H. Raman, M. Zhou et al., “High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.),” Theoretical and Applied Genetics, vol. 115, no. 2, pp. 265–276, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Omote, M. Hiasa, T. Matsumoto, M. Otsuka, and Y. Moriyama, “The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations,” Trends in Pharmacological Sciences, vol. 27, no. 11, pp. 587–593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Morita, N. Shitan, K. Sawada et al., “Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2447–2452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Yokosho, N. Yamaji, and J. F. Ma, “Isolation and characterisation of two MATE genes in rye,” Functional Plant Biology, vol. 37, no. 4, pp. 296–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. J. V. Magalhaes, “How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family,” Annals of Botany, vol. 106, no. 1, pp. 199–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. T. P. Durrett, W. Gassmann, and E. E. Rogers, “The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation,” Plant Physiology, vol. 144, no. 1, pp. 197–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Liu, J. V. Magalhaes, J. Shaff, and L. V. Kochian, “Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance,” Plant Journal, vol. 57, no. 3, pp. 389–399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. L. G. Maron, M. A. Piñeros, C. T. Guimarães et al., “Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize,” Plant Journal, vol. 61, no. 5, pp. 728–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Yokosho, N. Yamaji, and J. F. Ma, “An Al-inducible MATE gene is involved in external detoxification of Al in rice,” The Plant Journal, vol. 68, no. 6, pp. 1061–1069, 2011. View at Publisher · View at Google Scholar
  98. X. Y. Yang, J. L. Yang, Y. A. Zhou et al., “A de novo synthesis citrate transporter, Vigna umbellate multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex,” Plant Cell & Environment, vol. 34, no. 12, pp. 2138–2148, 2011. View at Publisher · View at Google Scholar
  99. J. F. Ma, W. Zhang, and Z. Zhao, “Regulatory mechanism of Al-induced secretion of organic acids anions-involvement of ABA in the Al-induced secretion of oxalate in buckwheat,” in Plant Nutrition-Food Security and Sustainability of Agro-Ecosystems Through Basis and Applied Research, W. J. Hortst, H. Flessa, B. Sattelmacher et al., Eds., pp. 486–487, Kluwer Academic, Dordrecht, The Netherland, 2001. View at Google Scholar
  100. Z. M. Yang, H. Yang, J. Wang, and Y. S. Wang, “Aluminum regulation of citrate metabolism for Al-induced citrate efflux in the roots of Cassia tora L.,” Plant Science, vol. 166, no. 6, pp. 1589–1594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Xu, J. You, N. Hou, H. Zhang, G. Chen, and Z. Yang, “Mitochondrial enzymes and citrate transporter contribute to the aluminium-induced citrate secretion from soybean (Glycine max) roots,” Functional Plant Biology, vol. 37, no. 4, pp. 285–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Gaume, F. Mächler, and E. Frossard, “Aluminum resistance in two cultivars of Zea mays L.: root exudation of organic acids and influence of phosphorus nutrition,” Plant and Soil, vol. 234, no. 1, pp. 73–81, 2001. View at Publisher · View at Google Scholar · View at Scopus
  103. J. E. Hayes and J. F. Ma, “Al-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots,” Journal of Experimental Botany, vol. 54, no. 388, pp. 1753–1759, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. L. S. Chen, N. Tang, H. X. Jiang, L. T. Yang, Q. Li, and B. R. Smith, “Changes in organic acid metabolism differ between roots and leaves of Citrus grandis in response to phosphorus and aluminum interactions,” Journal of Plant Physiology, vol. 166, no. 18, pp. 2023–2034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. L. T. Yang, Y. P. Qi, L. S. Chen et al., “Nitric oxide protects sour pummelo (Citrus grandis) seedlings against aluminum-induced inhibition of growth and photosynthesis,” Environmental and Experimental Botany, vol. 83, pp. 1–13, 2012. View at Publisher · View at Google Scholar
  106. L. T. Yang, L. S. Chen, H. Y. Peng, P. Guo, P. Wang, and C. L. Ma, “Organic acid metabolism in Citrus grandis leaves and roots is differently affected by nitric oxide and aluminum interactions,” Scientia Horticulturae, vol. 133, no. 1, pp. 40–46, 2012. View at Publisher · View at Google Scholar
  107. P. R. Ryan, S. D. Tyerman, T. Sasaki et al., “The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils,” Journal of Experimental Botany, vol. 62, no. 1, pp. 9–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. J. M. De La Fuente, V. Ramírez-Rodríguez, J. L. Cabrera-Ponce, and L. Herrera-Estrella, “Aluminum tolerance in transgenic plants by alteration of citrate synthesis,” Science, vol. 276, no. 5318, pp. 1566–1568, 1997. View at Publisher · View at Google Scholar · View at Scopus
  109. H. Koyama, E. Takita, A. Kawamura, T. Hara, and D. Shibata, “Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium,” Plant and Cell Physiology, vol. 40, no. 5, pp. 482–488, 1999. View at Google Scholar · View at Scopus
  110. Q. F. Wang, Y. Zhao, Q. Yi, K. Z. Li, Y. X. Yu, and L. M. Chen, “Overexpression of malate dehydrogenase in transgenic tobacco leaves: enhanced malate synthesis and augmented Al-resistance,” Acta Physiologiae Plantarum, vol. 32, no. 6, pp. 1209–1220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. Han, W. Zhang, B. Zhang, S. Zhang, W. Wang, and F. Ming, “One novel mitochondrial citrate synthase from Oryza sativa L. can enhance aluminum tolerance in transgenic tobacco,” Molecular Biotechnology, vol. 42, no. 3, pp. 299–305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Tesfaye, S. J. Temple, D. L. Allan, C. P. Vance, and D. A. Samac, “Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum,” Plant Physiology, vol. 127, no. 4, pp. 1836–1844, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. L. I. Trejo-Téllez, R. Stenzel, F. C. Gómez-Merino, and J. M. Schmitt, “Transgenic tobacco plants overexpressing pyruvate phosphate dikinase increase exudation of organic acids and decrease accumulation of aluminum in the roots,” Plant and Soil, vol. 326, no. 1, pp. 187–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. G. Neumann and V. Römheld, “Root excretion of carboxylic acids and protons in phosphorus-deficient plants,” Plant and Soil, vol. 211, no. 1, pp. 121–130, 1999. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Arango, F. Gévaudant, M. Oufattole, and M. Boutry, “The plasma membrane proton pump ATPase: the significance of gene subfamilies,” Planta, vol. 216, no. 3, pp. 355–365, 2003. View at Google Scholar · View at Scopus
  116. T. E. Sondergaard, A. Schulz, and M. G. Palmgren, “Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase,” Plant Physiology, vol. 136, no. 1, pp. 2475–2482, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. H. Shen, L. F. He, T. Sasaki et al., “Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase,” Plant Physiology, vol. 138, no. 1, pp. 287–296, 2005. View at Publisher · View at Google Scholar
  118. S. J. Ahn, Z. Rengel, and H. Matsumoto, “Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum,” New Phytologist, vol. 162, no. 1, pp. 71–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Matsumoto, “Inhibition of proton transport activity of microsomal membrane vesicles of barley roots by aluminum,” Soil Science and Plant Nutrition, vol. 34, no. 4, pp. 499–506, 1988. View at Publisher · View at Google Scholar
  120. S. J. Ahn, M. Sivaguru, H. Osawa, G. C. Chung, and H. Matsumoto, “Aluminum inhibits the H+-ATpase activity by permanently altering the plasma membrane surface potentials in squash roots,” Plant Physiology, vol. 126, no. 4, pp. 1381–1390, 2001. View at Publisher · View at Google Scholar · View at Scopus
  121. J. L. Yang, J. F. You, Y. Y. Li, P. Wu, and S. J. Zheng, “Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity,” Plant and Cell Physiology, vol. 48, no. 1, pp. 66–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Bose, O. Babourina, and Z. Rengel, “Role of magnesium in alleviation of aluminium toxicity in plants,” Journal of Experimental Botany, vol. 62, no. 7, pp. 2251–2264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. I. R. Silva, T. J. Smyth, D. W. Israel, C. D. Raper, and T. W. Rufty, “Magnesium ameliorates aluminum rhizotoxicity in soybean by increasing citric acid production and exudation by roots,” Plant and Cell Physiology, vol. 42, no. 5, pp. 546–554, 2001. View at Google Scholar · View at Scopus
  124. K. Tan and W. G. Keltjens, “Interaction between aluminium and phosphorus in sorghum plants—I. Studies with the aluminium sensitive sorghum genotype TAM428,” Plant and Soil, vol. 124, no. 1, pp. 15–23, 1990. View at Publisher · View at Google Scholar · View at Scopus
  125. Q. B. Sun, R. F. Shen, X. Q. Zhao, R. F. Chen, and X. Y. Dong, “Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-sensitive L. cuneata under relatively high Al stress,” Annals of Botany, vol. 102, no. 5, pp. 795–804, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Jemo, R. C. Abaidoo, C. Nolte, and W. J. Horst, “Aluminum resistance of cowpea as affected by phosphorus-deficiency stress,” Journal of Plant Physiology, vol. 164, no. 4, pp. 442–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. D. Dong, X. Peng, and X. Yan, “Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes,” Physiologia Plantarum, vol. 122, no. 2, pp. 190–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. H. Nian, S. J. Ahn, Z. M. Yang, and H. Matsumoto, “Effect of phosphorus deficiency on aluminium-induced citrate exudation in soybean (Glycine max),” Physiologia Plantarum, vol. 117, no. 2, pp. 229–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. V. Casolo, E. Petrussa, J. Krajňáková, F. Macrì, and A. Vianello, “Involvement of the mitochondrial K+ATP channel in H2O2 or NO-induced programmed death of soybean suspension cell cultures,” Journal of Experimental Botany, vol. 56, no. 413, pp. 997–1006, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. S. Sokolovski, A. Hills, R. Gay, C. Garcia-Mata, L. Lamattina, and M. R. Blatt, “Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells,” Plant Journal, vol. 43, no. 4, pp. 520–529, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. J. Chen, W. H. Wang, F. H. Wu et al., “Hydrogen sulfide alleviates aluminum toxicity in barley seedlings,” Plant and Soil. In press. View at Publisher · View at Google Scholar
  132. I. M. Rao, R. S. Zeigler, R. Vera, and S. Sarkarung, “Selection and breeding for acid-soil tolerance in crops,” BioScience, vol. 43, no. 7, pp. 454–465, 1993. View at Publisher · View at Google Scholar
  133. P. Barone, D. Rosellini, P. LaFayette, J. Bouton, F. Veronesi, and W. Parrott, “Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa,” Plant Cell Reports, vol. 27, no. 5, pp. 893–901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. H. Koyama, A. Kawamura, T. Kihara, T. Hara, E. Takita, and D. Shibata, “Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil,” Plant and Cell Physiology, vol. 41, no. 9, pp. 1030–1037, 2000. View at Google Scholar · View at Scopus
  135. M. Zhang, X. Y. Luo, W. Q. Bai et al., “Characterization of malate dehydrogenase gene from Citrus junos and its transgenic tobacco's tolerance to aluminium toxicity,” Acta Horticulturae Sinica, vol. 35, no. 12, pp. 1751–1758, 2008. View at Google Scholar
  136. E. Delhaize, P. R. Ryan, D. M. Hebb, Y. Yamamoto, T. Sasaki, and H. Matsumoto, “Engineering high-level aluminum tolerance in barley with the ALMT1 gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 42, pp. 15249–15254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. E. Delhaize, P. Taylor, P. J. Hocking, R. J. Simpson, P. R. Ryan, and A. E. Richardson, “Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil,” Plant Biotechnology Journal, vol. 7, no. 5, pp. 391–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. J. F. Pereira, G. Zhou, E. Delhaize, T. Richardson, M. Zhou, and P. R. Ryan, “Engineering greater aluminium resistance in wheat by over-expressing TaALMT1,” Annals of Botany, vol. 106, no. 1, pp. 205–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. H. Yang, J. Knapp, P. Koirala et al., “Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase,” Plant Biotechnology Journal, vol. 5, no. 6, pp. 735–745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. Z. H. Lin, L. S. Chen, R. B. Chen et al., “Root release and metabolism of organic acids in tea plants in response to phosphorus supply,” Journal of Plant Physiology, vol. 168, no. 7, pp. 644–652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. E. D. Mariano, R. A. Jorge, W. G. Keltjens, and M. Menossi, “Metabolism and root exudation of organic acid anions under aluminium stress,” Brazilian Journal of Plant Physiology, vol. 17, no. 1, pp. 157–172, 2005. View at Google Scholar · View at Scopus
  142. Y. M. Drozdowicz, J. C. Kissinger, and P. A. Rea, “AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis,” Plant Physiology, vol. 123, no. 1, pp. 353–362, 2000. View at Google Scholar · View at Scopus
  143. E. Hoffland, R. van den Boogaard, J. Nelemans, and G. Findenegg, “Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants,” New Phytologist, vol. 122, no. 4, pp. 675–680, 1992. View at Google Scholar