Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 201614, 10 pages
http://dx.doi.org/10.1155/2013/201614
Research Article

The Cardioprotective Effect of Hypertonic Saline Is Associated with Inhibitory Effect on Macrophage Migration Inhibitory Factor in Sepsis

1Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
2Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
3Department of Anesthesiology, Catholic Mercy Hospital, Hsinchu, Taiwan
4Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan
5Department of Nursing, Tzu Chi College of Technology, Hualien, Taiwan
6Department of Nursing, HungKuang University, Taichung, Taiwan
7Department of Pharmacology, National Defense Medical Center, 160 Min-Chuan E. Road, Taipei 114, Taiwan
8Division of Cardiology, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
9Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Chi-Mei Medical Center, 901 Chung Hwa Road, Tainan 710, Taiwan
10Chia Nan University of Pharmacy & Science, Tainan, Taiwan

Received 2 October 2013; Accepted 8 November 2013

Academic Editor: Joen-Rong Sheu

Copyright © 2013 Yi-Li Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Zanotti-Cavazzonia and S. M. Hollenberg, “Cardiac dysfunction in severe sepsis and septic shock,” Current Opinion in Critical Care, vol. 15, no. 5, pp. 392–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. P. Dellinger, M. M. Levy, J. M. Carlet et al., “Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008,” Intensive Care Medicine, vol. 34, pp. 17–60, 2008. View at Google Scholar
  3. L. M. Schmall, W. W. Muir, and J. T. Robertson, “Haemodynamic effects of small volume hypertonic saline in experimentally induced haemorrhagic shock,” Equine Veterinary Journal, vol. 22, no. 4, pp. 273–277, 1990. View at Google Scholar · View at Scopus
  4. J. L. Pascual, K. A. Khwaja, L. E. Ferri et al., “Hypertonic saline resuscitation attenuates neutrophil lung sequestration and transmigration by diminishing leukocyte-endothelial interactions in a two-hit model of hemorrhagic shock and infection,” Journal of Trauma, vol. 54, no. 1, pp. 121–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. Y.-M. Yao, H. Redl, S. Bahrami, and G. Schlag, “The inflammatory basis of trauma/shock-associated multiple organ failure,” Inflammation Research, vol. 47, no. 5, pp. 201–210, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. C.-C. Shih, S.-J. Chen, A. Chen, J.-Y. Wu, W.-J. Liaw, and C.-C. Wu, “Therapeutic effects of hypertonic saline on peritonitis-induced septic shock with multiple organ dysfunction syndrome in rats,” Critical Care Medicine, vol. 36, no. 6, pp. 1864–1872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Hogue, F. Chagnon, and O. Lesur, “Resuscitation fluids and endotoxin-induced myocardial dysfunction: is selection a load-independent differential issue?” Shock, vol. 38, pp. 307–313, 2012. View at Google Scholar
  8. I. Stojanovic, T. Saksida, and S. Stosic-Grujicic, “Beta cell function: the role of macrophage migration inhibitory factor,” Immunologic Research, vol. 52, no. 1-2, pp. 81–88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Lue, R. Kleemann, T. Calandra, T. Roger, and J. Bernhagen, “Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease,” Microbes and Infection, vol. 4, no. 4, pp. 449–460, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. L. B. Garner, M. S. Willis, D. L. Carlson et al., “Macrophage migration inhibitory factor is a cardiac-derived myocardial depressant factor,” The American Journal of Physiology, vol. 285, no. 6, pp. H2500–H2509, 2003. View at Google Scholar · View at Scopus
  11. T. Ha, F. Hua, D. Grant et al., “Glucan phosphate attenuates cardiac dysfunction and inhibits cardiac MIF expression and apoptosis in septic mice,” The American Journal of Physiology, vol. 291, no. 4, pp. H1910–H1918, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Y. Kim, S. H. Choi, Y. H. Yoon et al., “Effects of hypertonic saline on macrophage migration inhibitory factor in traumatic conditions,” Experimental and Therapeutic Medicine, vol. 5, pp. 362–366, 2013. View at Google Scholar
  13. F. Chagnon, C. N. Metz, R. Bucala, and O. Lesur, “Endotoxin-induced myocardial dysfunction: effects of macrophage migration inhibitory factor neutralization,” Circulation Research, vol. 96, no. 10, pp. 1095–1102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. K. M. Dibb, H. K. Graham, L. A. Venetucci, D. A. Eisner, and A. W. Trafford, “Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart,” Cell Calcium, vol. 42, no. 4-5, pp. 503–512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Y.-M. Lee, P.-Y. Cheng, L.-S. Chim et al., “Baicalein, an active component of Scutellaria baicalensis Georgi, improves cardiac contractile function in endotoxaemic rats via induction of heme oxygenase-1 and suppression of inflammatory responses,” Journal of Ethnopharmacology, vol. 135, no. 1, pp. 179–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Mathiak, D. Szewczyk, F. Abdullah, P. Ovadia, G. Feuerstein, and R. Rabinovici, “An improved clinically relevant sepsis model in the conscious rat,” Critical Care Medicine, vol. 28, no. 6, pp. 1947–1952, 2000. View at Google Scholar · View at Scopus
  17. F. L. Yang, C. H. Li, B. G. Hsu et al., “The reduction of tumor necrosis factor-α release and tissue damage by pentobarbital in the experimental endotoxemia model,” Shock, vol. 28, no. 3, pp. 309–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. de Felippe Jr., J. Timoner, and I. T. Velasco, “Treatment of refractory hypovolaemic shock by 7.5% sodium chloride injections,” The Lancet, vol. 2, no. 8202, pp. 1002–1004, 1980. View at Google Scholar · View at Scopus
  19. A. L. Johnson and L. M. Criddle, “Pass the salt: indications for and implications of using hypertonic saline,” Critical Care Nurse, vol. 24, no. 5, pp. 36–46, 2004. View at Google Scholar · View at Scopus
  20. K. M. Mullane, R. Kraemer, and B. Smith, “Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium,” Journal of Pharmacological Methods, vol. 14, no. 3, pp. 157–167, 1985. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Wongcharoen, Y.-C. Chen, Y.-J. Chen et al., “Effects of a Na+/Ca2+ exchanger inhibitor on pulmonary vein electrical activity and ouabain-induced arrhythmogenicity,” Cardiovascular Research, vol. 70, no. 3, pp. 497–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Y.-C. Chen, Y.-H. Kao, C.-F. Huang, C.-C. Cheng, Y.-J. Chen, and S.-A. Chen, “Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 4, pp. 781–788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M.-T. Chung, P.-Y. Cheng, K.-K. Lam et al., “Cardioprotective effects of long-term treatment with raloxifene, a selective estrogen receptor modulator, on myocardial ischemia/reperfusion injury in ovariectomized rats,” Menopause, vol. 17, no. 1, pp. 127–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Fauvel, P. Marchetti, G. Obert et al., “Protective effects of cyclosporin A from endotoxin-induced myocardial dysfunction and apoptosis in rats,” The American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 4, pp. 449–455, 2002. View at Google Scholar · View at Scopus
  25. K. Brown, S. Brain, J. Pearson, J. Edgeworth, S. Lewis, and D. Treacher, “Neutrophils in development of multiple organ failure in sepsis,” The Lancet, vol. 368, no. 9530, pp. 157–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Rudolph, T. K. Rudolph, J. C. Hennings et al., “Activation of polymorphonuclear neutrophils in patients with impaired left ventricular function,” Free Radical Biology and Medicine, vol. 43, no. 8, pp. 1189–1196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. N. C. Riedemann, R.-F. Guo, and P. A. Ward, “Novel strategies for the treatment of sepsis,” Nature Medicine, vol. 9, no. 5, pp. 517–524, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. W.-G. Cao, M. Morin, C. Metz, R. Maheux, and A. Akoum, “Stimulation of macrophage migration inhibitory factor expression in endometrial stromal cells by interleukin 1, beta involving the nuclear transcription factor NFκB,” Biology of Reproduction, vol. 73, no. 3, pp. 565–570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Sharshar, A. Blanchard, M. Paillard, J. C. Raphael, P. Gajdos, and D. Annane, “Circulating vasopressin levels in septic shock,” Critical Care Medicine, vol. 31, no. 6, pp. 1752–1758, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. T. K. Desai, R. W. Carlson, and M. A. Geheb, “Prevalence and clinical implications of hypocalcemia in acutely ill patients in a medical intensive care setting,” The American Journal of Medicine, vol. 84, no. 2, pp. 209–214, 1988. View at Google Scholar · View at Scopus
  31. T. Kuroda, T. Harada, H. Tsutsumi, and M. Kobayashi, “Hypernatremic suppression of neutrophils,” Burns, vol. 23, no. 4, pp. 338–340, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. C. C. Shih, M. F. Tsai, S. J. Chen et al., “Effects of small-volume hypertonic saline on acid-base and electrolytes balance in rats with peritonitis-induced sepsis,” Shock, vol. 38, pp. 649–655, 2012. View at Google Scholar
  33. S.-K. Song, I. E. Karl, J. J. H. Ackerman, and R. S. Hotchkiss, “Increased intracellular Ca2+: a critical link in the pathophysiology of sepsis?” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 9, pp. 3933–3937, 1993. View at Google Scholar · View at Scopus
  34. L. Voisin, D. Breuillé, L. Combaret et al., “Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca+2-activated, and ubiquitin-proteasome proteolytic pathways,” Journal of Clinical Investigation, vol. 97, no. 7, pp. 1610–1617, 1996. View at Google Scholar · View at Scopus
  35. J. W. Horton, D. L. Maass, and D. J. White, “Hypertonic saline dextran after burn injury decreases inflammatory cytokine responses to subsequent pneumonia-related sepsis,” The American Journal of Physiology, vol. 290, no. 4, pp. H1642–H1650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J.-M. Pei, X.-C. Yu, M.-L. Fung et al., “Impaired G(s)α and adenylyl cyclase cause β-adrenoceptor desensitization in chronically hypoxic rat hearts,” The American Journal of Physiology, vol. 279, no. 5, pp. C1455–C1463, 2000. View at Google Scholar · View at Scopus
  37. A. Kumar, V. Thota, L. Dee, J. Olson, E. Uretz, and J. E. Parrillo, “Tumor necrosis factor α and interleukin 1β are responsible for in vitro myocardial cell depression induced by human septic shock serum,” Journal of Experimental Medicine, vol. 183, no. 3, pp. 949–958, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Stamm, D. B. Cowan, I. Friehs, S. Noria, P. J. Del Nido, and F. X. McGowan Jr., “Rapid endotoxin-induced alterations in myocardial calcium handling: obligatory role of cardiac TNF-α,” Anesthesiology, vol. 95, no. 6, pp. 1396–1405, 2001. View at Google Scholar · View at Scopus
  39. D. J. Duncan, Z. Yang, P. M. Hopkins, D. S. Steele, and S. M. Harrison, “TNF-α and IL-1β increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes,” Cell Calcium, vol. 47, no. 4, pp. 378–386, 2010. View at Publisher · View at Google Scholar · View at Scopus