Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 205183, 12 pages
Research Article

Effects of Nanosilver Exposure on Cholinesterase Activities, CD41, and CDF/LIF-Like Expression in ZebraFish (Danio rerio) Larvae

1Kokshetau State University Named after Sh. Ualikhanov, Abai Street 76, Kokshetau 020000, Kazakhstan
2DISTAV, Università di Genova, Viale Benedetto XV, 16132 Genova, Italy
3Nanodiagnostics Srl, Via Enrico Fermi 1/L, 41057 San Vito di Spilamberto, Italy
4Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

Received 22 April 2013; Revised 7 July 2013; Accepted 8 July 2013

Academic Editor: Zongli Xu

Copyright © 2013 Marzhan Myrzakhanova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Metal nanosolicoparticles are suspected to cause diseases in a number of organisms, including man. In this paper, we report the effects of nanosilver (Ag, 1–20 nm particles) on the early development of the zebrafish, a well-established vertebrate model. Embryos at the midgastrula stage were exposed to concentrations ranging from 100 to 0.001 mg/L to verify the effects on different endpoints: lethality, morphology, expression of cholinergic molecules, and development of the immune system. (1) Relative risk of mortality was exponential in the range between 0.001 and 10 mg/L. Exposure to 100 mg/L caused 100% death of embryos before reaching the tail-bud stage. (2) Developmental anomalies were present in the 72 h larvae obtained from embryos exposed to nanosilver: whole body length, decreased eye dimension, and slow response to solicitation by gentle touch with a needle tip, with a significant threshold at 0.1 mg/L. (3) Dose-dependent inhibition of acetylcholinesterase activity was significant among the exposures, except between 1 mg/L and 10 mg/L. (4) The distribution of CD41+ cells and of CDF/LIF-like immunoreactivity was altered according to the Ag concentration. The possible effect of nanosilver in impairing immune system differentiation through the inhibition of molecules related to the cholinergic system is discussed.