Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 236469, 7 pages
http://dx.doi.org/10.1155/2013/236469
Research Article

Preparation of Biocompatible Carboxymethyl Chitosan Nanoparticles for Delivery of Antibiotic Drug

1College of Pharmacy, Liaoning Medical University, Jinzhou 121000, China
2College of Veterinary Medicine, Liaoning Medical University, Jinzhou 121000, China

Received 4 January 2013; Revised 10 February 2013; Accepted 13 February 2013

Academic Editor: John B. Vincent

Copyright © 2013 Liang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Huczko, B. Conetta, D. Bonner et al., “Susceptibility of bacterial isolates to gatifloxacin and ciprofloxacin from clinical trials 1997-1998,” International Journal of Antimicrobial Agents, vol. 16, no. 4, pp. 401–405, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Zheng, H. Wu, J. Du, S. Li, and Y. Yan, “The bacterial inhibitory ability and in vivo drug release pattern of a new drug delivery system: ciprofloxacine/tricalcium phosphate delivery capsule,” Journal of Tongji Medical University, vol. 18, no. 3, pp. 172–176, 1998. View at Google Scholar · View at Scopus
  3. Y. Tang and K. Gan, “Statistical evaluation of in vitro dissolution of different brands of ciprofloxacin hydrochloride tablets and capsules,” Drug Development and Industrial Pharmacy, vol. 24, no. 6, pp. 549–552, 1998. View at Google Scholar · View at Scopus
  4. M. A. Horwitz, “Phagocytosis of microorganisms,” Reviews of Infectious Diseases, vol. 4, no. 1, pp. 104–123, 1982. View at Google Scholar · View at Scopus
  5. S. Majumdar, D. Flasher, D. S. Friend et al., “Efficacies of liposome-encapsulated streptomycin and ciprofloxacin against Mycobacterium avium-M. intracellulare complex infections in human peripheral blood monocyte/macrophages,” Antimicrobial Agents and Chemotherapy, vol. 36, no. 12, pp. 2808–2815, 1992. View at Google Scholar · View at Scopus
  6. A. Di Martino, M. Sittinger, and M. V. Risbud, “Chitosan: a versatile biopolymer for orthopaedic tissue-engineering,” Biomaterials, vol. 26, no. 30, pp. 5983–5990, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. V. R. Sinha, A. K. Singla, S. Wadhawan et al., “Chitosan microspheres as a potential carrier for drugs,” International Journal of Pharmaceutics, vol. 274, no. 1-2, pp. 1–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Grenha, C. I. Grainger, L. A. Dailey et al., “Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro,” European Journal of Pharmaceutical Sciences, vol. 31, no. 2, pp. 73–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Illum, “Chitosan and its use as a pharmaceutical excipient,” Pharmaceutical Research, vol. 15, no. 9, pp. 1326–1331, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. I. M. van der Lubben, J. C. Verhoef, G. Borchard, and H. E. Junginger, “Chitosan and its derivatives in mucosal drug and vaccine delivery,” European Journal of Pharmaceutical Sciences, vol. 14, no. 3, pp. 201–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. C. Montgomery, “Response surface methodology,” in Design and Analysis of Experiments, D. C. Montgomery, Ed., pp. 445–474, John Wiley & Sons, New York, NY, USA, 2nd edition, 1984. View at Google Scholar
  12. J. Hao, X. Fang, Y. Zhou et al., “Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design,” International Journal of Nanomedicine, vol. 6, pp. 683–692, 2011. View at Google Scholar
  13. G. Y. Li, M. Zhong, Z. D. Zhou, Y. D. Zhong, P. Ding, and Y. Huang, “Formulation optimization of chelerythrine loaded O-carboxymethylchitosan microspheres using response surface methodology,” International Journal of Biological Macromolecules, vol. 49, no. 5, pp. 970–978, 2011. View at Publisher · View at Google Scholar
  14. E. E. Hassan, R. C. Parish, and J. M. Gallo, “Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole,” Pharmaceutical Research, vol. 9, no. 3, pp. 390–397, 1992. View at Google Scholar · View at Scopus
  15. I. Steinhauser, B. Spänkuch, K. Strebhardt, and K. Langer, “Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells,” Biomaterials, vol. 27, no. 28, pp. 4975–4983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Sharma, A. Malik, and S. Satya, “Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr (VI) removal by Aspergillus lentulus AML05,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 1198–1204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, vol. 76, no. 5, pp. 965–977, 2008. View at Publisher · View at Google Scholar · View at Scopus