Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 236893, 3 pages

Application of Biotechnology in Myocardial Regeneration-Tissue Engineering Triad: Cells, Scaffolds, and Signaling Molecules

1Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
2Translational Oncology Laboratory (Clinical Hospital Santiago de Compostela), Department of Functional Biology and Health Sciences, University of Vigo, 36310 Vigo, Spain
3Department of Internal Medicine, Marienhaus Hospital, Saarland, 66564 Ottweiler, Germany

Received 26 December 2012; Accepted 26 December 2012

Copyright © 2013 Daria Nurzynska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Lakshmanan, U. M. Krishnan, and S. Sethuraman, “Living cardiac patch: the elixir for cardiac regeneration,” Expert Opinion on Biological Therapy, vol. 12, no. 12, pp. 1623–1640, 2012. View at Google Scholar
  2. D. Nurzynska, C. Castaldo, S. Montagnani, and F. Di Meglio, “Cardiac progenitor and stem cell biology and therapy,” in Progenitor and Stem Cell Technologies and Therapies, A. Atala, Ed., pp. 418–442, Woodhead Publishing Limited, Cambridge, UK, 2012. View at Google Scholar
  3. D. Nurzynska, F. Di Meglio, V. Romano et al., “Cardiac primitive cells become committed to a cardiac fate in adult human heart with chronic ischemic disease but fail to acquire mature phenotype—genetic and phenotypic study,” Basic Research in Cardiology, vol. 108, no. 1, pp. 320–334, 2013. View at Google Scholar
  4. E. M. Heinrich and S. Dimmeler, “MicroRNAs and stem cells: control of pluripotency, reprogramming, and lineage commitment,” Circulation Research, vol. 110, no. 7, pp. 1014–1022, 2012. View at Google Scholar
  5. A. E. Balber, “Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine,” Stem Cells, vol. 29, no. 4, pp. 570–575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. E. C. Perin, G. V. Silva, Y. Zheng et al., “Randomized, double-blind pilot study of transendocardial injection of autologous aldehyde dehydrogenase-bright stem cells in patients with ischemic heart failure,” American Heart Journal, vol. 163, no. 3, pp. 415–421, 2012. View at Google Scholar
  7. N. Dib, P. Menasche, J. J. Bartunek et al., “Recommendations for successful training on methods of delivery of biologics for cardiac regeneration: a report of the International Society for Cardiovascular Translational Research,” Cardiovascular Interventions, vol. 3, no. 3, pp. 265–275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Sarig and M. MacHluf, “Engineering cell platforms for myocardial regeneration,” Expert Opinion on Biological Therapy, vol. 11, no. 8, pp. 1055–1077, 2011. View at Publisher · View at Google Scholar · View at Scopus