Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 246861, 8 pages
http://dx.doi.org/10.1155/2013/246861
Research Article

Bodyweight Assessment of Enamelin Null Mice

1Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Avenue, Ann Arbor, MI 48109-1078, USA
2Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
3Department of Biostatistics, University of Michigan School of Public Health, 109 Observatory Street, 1700 SPH I, Ann Arbor, MI 48109-2029, USA

Received 21 August 2012; Revised 17 October 2012; Accepted 22 October 2012

Academic Editor: L. Brian Foster

Copyright © 2013 Albert H.-L. Chan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Rajpar, K. Harley, C. Laing, R. M. Davies, and M. J. Dixon, “Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta,” Human Molecular Genetics, vol. 10, no. 16, pp. 1673–1677, 2001. View at Google Scholar · View at Scopus
  2. C. K. Mårdh, B. Bäckman, G. Holmgren, J. C. C. Hu, J. P. Simmer, and K. Forsman-Semb, “A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2),” Human Molecular Genetics, vol. 11, no. 9, pp. 1069–1074, 2002. View at Google Scholar · View at Scopus
  3. M. Kida, T. Ariga, T. Shirakawa, H. Oguchi, and Y. Sakiyama, “Autosomal-dominant hypoplastic form of amelogenesis imperfecta caused by an enamelin gene mutation at the exon-intron boundary,” Journal of Dental Research, vol. 81, no. 11, pp. 738–742, 2002. View at Google Scholar · View at Scopus
  4. P. S. Hart, M. D. Michalec, W. K. Seow, T. C. Hart, and J. T. Wright, “Identification of the enamelin (g.8344delG) mutation in a new kindred and presentation of a standardized ENAM nomenclature,” Archives of Oral Biology, vol. 48, no. 8, pp. 589–596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. T. C. Hart, P. S. Hart, M. C. Gorry et al., “Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects,” Journal of Medical Genetics, vol. 40, no. 12, pp. 900–906, 2003. View at Google Scholar · View at Scopus
  6. J. W. Kim, F. Seymen, B. P. J. Lin et al., “ENAM mutations in autosomal-dominant amelogenesis imperfecta,” Journal of Dental Research, vol. 84, no. 3, pp. 278–282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Ozdemir, P. S. Hart, E. Firatli, G. Aren, O. H. Ryu, and T. C. Hart, “Phenotype of ENAM mutations is dosage-dependent,” Journal of Dental Research, vol. 84, no. 11, pp. 1036–1041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Kim, J. P. Simmer, B. P. L. Lin, F. Seymen, J. D. Bartlett, and J. C. C. Hu, “Mutational analysis of candidate genes in 24 amelogenesis imperfecta families,” European Journal of Oral Sciences, vol. 114, supplement 1, pp. 3–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Gutierrez, M. Chaves, D. M. Torres, and I. Briceño, “Identification of a novel mutation in the enamalin gene in a family with autosomal-dominant amelogenesis imperfecta,” Archives of Oral Biology, vol. 52, no. 5, pp. 503–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Pavlič, M. Petelin, and T. Battelino, “Phenotype and enamel ultrastructure characteristics in patients with ENAM gene mutations g.13185-13186insAG and 8344delG,” Archives of Oral Biology, vol. 52, no. 3, pp. 209–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Y. Kang, F. Seymen, S. K. Lee et al., “Candidate gene strategy reveals ENAM mutations,” Journal of Dental Research, vol. 88, no. 3, pp. 266–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. C. Chan, L. Mai, A. Oikonomopoulou et al., “Altered enamelin phosphorylation site causes amelogenesis imperfecta,” Journal of Dental Research, vol. 89, no. 7, pp. 695–699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. G. Lindemeyer, C. W. Gibson, and T. J. Wright, “Amelogenesis imperfecta due to a mutation of the enamelin gene: clinical case with genotype-phenotype correlations,” Pediatric Dentistry, vol. 32, no. 1, pp. 56–60, 2010. View at Google Scholar · View at Scopus
  14. J. T. Wright, M. Torain, K. Long et al., “Amelogenesis imperfecta: genotype-phenotype studies in 71 families,” Cells Tissues Organs, vol. 194, pp. 279–283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. L. Song, C. N. Wang, C. Z. Zhang, K. Yang, and Z. Bian, “Molecular characterization of amelogenesis imperfecta in Chinese patients,” Cells Tissues Organs, vol. 13, article 13, 2012. View at Google Scholar
  16. S. Simmer, N. Estrella, R. Milkovich, and J. Hu, “Autosomal dominant amelogenesis imperfecta associated with ENAM frameshift mutation p.Asn36Ilefs56,” Clinical Genetics. In press.
  17. H. Masuya, K. Shimizu, H. Sezutsu et al., “Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI),” Human Molecular Genetics, vol. 14, no. 5, pp. 575–583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Seedorf, M. Klaften, F. Eke, H. Fuchs, U. Seedorf, and M. Hrabe De Angeĺis, “A mutation in the enamelin gene in a mouse model,” Journal of Dental Research, vol. 86, no. 8, pp. 764–768, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. C. C. Hu, Y. Hu, C. E. Smith et al., “Enamel defects and ameloblast-specific expression in Enam knock-out/lacZ knock-in mice,” Journal of Biological Chemistry, vol. 283, no. 16, pp. 10858–10871, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. A. Deméré, M. R. McGowen, A. Berta, and J. Gatesy, “Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales,” Systematic Biology, vol. 57, no. 1, pp. 15–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. W. Meredith, J. Gatesy, W. J. Murphy, O. A. Ryder, and M. S. Springer, “Molecular decay of the tooth gene enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals,” PLoS Genetics, vol. 5, no. 9, Article ID e1000634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Al-Hashimi, A. G. Lafont, S. Delgado, K. Kawasaki, and J. Y. Sire, “The enamelin genes in lizard, crocodile, and frog and the pseudogene in the chicken provide new insights on enamelin evolution in tetrapods,” Molecular Biology and Evolution, vol. 27, no. 9, pp. 2078–2094, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R. W. Meredith, J. Gatesy, J. Cheng, and M. S. Springer, “Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales,” Proceedings of Biological Sciences, vol. 278, no. 1708, pp. 993–1002, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Acs, G. Lodolini, S. Kaminsky, and G. J. Cisneros, “Effect of nursing caries on body weight in a pediatric population,” Pediatric Dentistry, vol. 14, no. 5, pp. 302–305, 1992. View at Google Scholar · View at Scopus
  25. A. Sheiham, “Dental caries affects body weight, growth and quality of life in pre-school children,” British Dental Journal, vol. 201, no. 10, pp. 625–626, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. P. S. Hart, T. C. Hart, M. D. Michalec et al., “Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta,” Journal of Medical Genetics, vol. 41, no. 7, pp. 545–549, 2004. View at Google Scholar · View at Scopus
  27. J. W. Kim, J. P. Simmer, T. C. Hart et al., “MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta,” Journal of Medical Genetics, vol. 42, no. 3, pp. 271–275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. P. S. Hart, S. Becerik, D. Cogulu et al., “Novel FAM83H mutations in Turkish families with autosomal dominant hypocalcified amelogenesis imperfecta,” Clinical Genetics, vol. 75, no. 4, pp. 401–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. W. Kim, J. P. Simmer, Y. Y. Hu et al., “Amelogenin p.M1T and p.W4S mutations underlying hypoplastic X-linked amelogenesis imperfecta,” Journal of Dental Research, vol. 83, no. 5, pp. 378–383, 2004. View at Google Scholar · View at Scopus
  30. H. A. el-Oksh, T. M. Sutherland, and J. S. Williams, “Prenatal and postnatal maternal influence on growth in mice,” Genetics, vol. 57, no. 1, pp. 79–94, 1967. View at Google Scholar · View at Scopus
  31. S. M. Azzam, M. K. Nielsen, and G. E. Dickerson, “Postnatal litter size effects on growth and reproduction in rats,” Journal of Animal Science, vol. 58, no. 6, pp. 1337–1342, 1984. View at Google Scholar · View at Scopus
  32. J. J. Rutledge, O. W. Robison, E. J. Eisen, and J. E. Legates, “Dynamics of genetic and maternal effects in mice,” Journal of Animal Science, vol. 35, no. 5, pp. 911–918, 1972. View at Google Scholar · View at Scopus
  33. Y. Li, Z. A. Yuan, M. A. Aragon, A. B. Kulkarni, and C. W. Gibson, “Comparison of body weight and gene expression in amelogenin null and wild-type mice,” European Journal of Oral Sciences, vol. 114, supplement 1, pp. 190–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Fuchs, S. Sabrautzki, H. Seedorf et al., “Does enamelin have pleiotropic effects on organs other than the teeth? Lessons from a phenotyping screen of two enamelin-mutant mouse lines,” European Journal of Oral Sciences, vol. 120, pp. 269–277, 2012. View at Google Scholar
  35. K. Kawasaki and K. M. Weiss, “Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4060–4065, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Kawasaki, A. V. Buchanan, and K. M. Weiss, “Gene duplication and the evolution of vertebrate skeletal mineralization,” Cells Tissues Organs, vol. 186, no. 1, pp. 7–24, 2007. View at Publisher · View at Google Scholar · View at Scopus