Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 248648, 9 pages
http://dx.doi.org/10.1155/2013/248648
Research Article

Multiclass Prediction with Partial Least Square Regression for Gene Expression Data: Applications in Breast Cancer Intrinsic Taxonomy

1Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
2Cathay General Hospital SiJhih, New Taipei, Taiwan
3School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
4School of Medicine, Taipei Medical University, Taipei, Taiwan
5Department of Surgery, Cathay General Hospital, Taipei, Taiwan
6Graduate Institute of Physiology, National Taiwan University, Taipei City, Taiwan

Received 24 October 2013; Accepted 23 November 2013

Academic Editor: Koichi Handa

Copyright © 2013 Chi-Cheng Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Boulesteix, C. Strobl, T. Augustin, and M. Daumer, “Evaluating microarray-based classifiers: an overview,” Cancer Informatics, vol. 6, pp. 77–97, 2008. View at Google Scholar · View at Scopus
  2. S. Dudoit, J. Fridlyand, and T. P. Speed, “Comparison of discrimination methods for the classification of tumors using gene expression data,” Journal of the American Statistical Association, vol. 97, no. 457, pp. 77–86, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Dupuy and R. M. Simon, “Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting,” Journal of the National Cancer Institute, vol. 99, no. 2, pp. 147–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Dai, L. Lieu, and D. Rocke, “Dimension reduction for classification with gene expression microarray data,” Statistical Applications in Genetics and Molecular Biology, vol. 5, no. 1, article 6, 2006. View at Google Scholar · View at Scopus
  5. D. V. Nguyen and D. M. Rocke, “Tumor classification by partial least squares using microarray gene expression data,” Bioinformatics, vol. 18, no. 1, pp. 39–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. V. Nguyen and D. M. Rocke, “Multi-class cancer classification via partial least squares with gene expression profiles,” Bioinformatics, vol. 18, no. 9, pp. 1216–1226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Pérez-Enciso and M. Tenenhaus, “Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach,” Human Genetics, vol. 112, no. 5-6, pp. 581–592, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. C. Huang, S. H. Tu, H. H. Lien, J. Y. Jeng, J. S. Liu, C. S. Huang et al., “Estrogen receptor status prediction by gene component regression: a comparativ study,” International Journal of Data Mining and Bioinformatics. In press.
  9. C. C. Huang, S. H. Tu, and E. Y. Chuang, “Dissecting the heterogeneity of luminal subtype breast cancer using gene component analysis,” Journal of Medical Research and Development, vol. 2, pp. 21–27, 2013. View at Google Scholar
  10. C. M. Perou, T. Sørile, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Sørlie, C. M. Perou, R. Tibshirani et al., “Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10869–10874, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Sørlie, R. Tibshirani, J. Parker et al., “Repeated observation of breast tumor subtypes in independent gene expression data sets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8418–8423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Hu, C. Fan, D. S. Oh et al., “The molecular portraits of breast tumors are conserved across microarray platforms,” BMC Genomics, vol. 7, article 96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Sotiriou, S. Y. Neo, L. M. McShane et al., “Breast cancer classification and prognosis based on gene expression profiles from a population-based study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 18, pp. 10393–10398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. S. Parker, M. Mullins, M. C. U. Cheang et al., “Supervised risk predictor of breast cancer based on intrinsic subtypes,” Journal of Clinical Oncology, vol. 27, no. 8, pp. 1160–1167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Van Der Voet, “Comparing the predictive accuracy of models using a simple randomization test,” Chemometrics and Intelligent Laboratory Systems, vol. 25, no. 2, pp. 313–323, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. R. D. Tobias, “An introduction to partial least squares regression,” SAS Institute, Cary, NC, USA, 1997.
  18. X. Lu, X. Lu, Z. C. Wang, J. D. Iglehart, X. Zhang, and A. L. Richardson, “Predicting features of breast cancer with gene expression patterns,” Breast Cancer Research and Treatment, vol. 108, no. 2, pp. 191–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K.-J. Kao, K.-M. Chang, H.-C. Hsu, and A. T. Huang, “Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization,” BMC Cancer, vol. 11, article 143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. C. Huang, S. H. Tu, H. H. Lien, J. Y. Jeng, J. S. Liu, C. S. Huang et al., “Prediction consistency and clinical presentations of breast cancer molecular subtype for Han Chinese population,” Journal of Translational Medicine, vol. 10, supplement 1, article S10, 2012. View at Publisher · View at Google Scholar
  21. R. A. Irizarry, B. Hobbs, F. Collin et al., “Exploration, normalization, and summaries of high density oligonucleotide array probe level data,” Biostatistics, vol. 4, no. 2, pp. 249–264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Sørlie, E. Borgan, S. Myhre et al., “The importance of gene-centring microarray data,” The Lancet Oncology, vol. 11, no. 8, pp. 719–720, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. West, C. Blanchette, H. Dressman et al., “Predicting the clinical status of human breast cancer by using gene expression profiles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11462–11467, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Huang, S. H. Cheng, H. Dressman et al., “Gene expression predictors of breast cancer outcomes,” The Lancet, vol. 361, no. 9369, pp. 1590–1596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Musumarra, V. Barresi, D. F. Condorelli, C. G. Fortuna, and S. Scirè, “Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis,” Journal of Chemometrics, vol. 18, no. 3-4, pp. 125–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Tan, L. Shi, W. Tong, G. T. G. Hwang, and C. Wang, “Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models,” Computational Biology and Chemistry, vol. 28, no. 3, pp. 235–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. R. Dabney, “ClaNC: point-and-click software for classifying microarrays to nearest centroids,” Bioinformatics, vol. 22, no. 1, pp. 122–123, 2006. View at Publisher · View at Google Scholar · View at Scopus