Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 279505, 15 pages
http://dx.doi.org/10.1155/2013/279505
Research Article

MMP1, MMP9, and COX2 Expressions in Promonocytes Are Induced by Breast Cancer Cells and Correlate with Collagen Degradation, Transformation-Like Morphological Changes in MCF-10A Acini, and Tumor Aggressiveness

1Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Avenida Cuauhtémoc 330, Colonia Doctores, Delegación Cuauhtémoc, 06720 México City, DF, Mexico
2Programa de Maestría en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, 11340 México City, DF, Mexico
3Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Avenida Cuauhtémoc 330, Colonia Doctores, Delegación Cuauhtémoc, 06720 México City, DF, Mexico
4Laboratorio de Inmunoalergia y Asma, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Colonia Belisario Domínguez Sección, Delegación Tlalpan, 14080 México City, DF, Mexico
5Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Avenida Cuauhtémoc 330, Colonia Doctores, Delegación Cuauhtémoc, 06720 México City, DF, Mexico
6Departamento de Morfología de la Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, 11340 México City, DF, Mexico
7Departamento de Inmunología de la Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, 11340 México City, DF, Mexico

Received 23 January 2013; Accepted 10 April 2013

Academic Editor: Mouldy Sioud

Copyright © 2013 G. K. Chimal-Ramírez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Mbeunkui and D. J. Johann Jr., “Cancer and the tumor microenvironment: a review of an essential relationship,” Cancer Chemotherapy and Pharmacology, vol. 63, no. 4, pp. 571–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. B. Wyckoff, Y. Wang, E. Y. Lin et al., “Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors,” Cancer Research, vol. 67, no. 6, pp. 2649–2656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Bingle, N. J. Brown, and C. E. Lewis, “The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies,” Journal of Pathology, vol. 196, no. 3, pp. 254–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. F. R. Balkwill and A. Mantovani, “Cancer-related inflammation: common themes and therapeutic opportunities,” Seminars in Cancer Biology, vol. 22, no. 1, pp. 33–40, 2012. View at Google Scholar
  6. A. Sica and A. Mantovani, “Macrophage plasticity and polarization: in vivo veritas,” The Journal of Clinical Investigation, vol. 122, no. 3, pp. 787–795, 2012. View at Google Scholar
  7. S. M. Mahmoud, A. H. Lee, E. C. Paish, R. D. Macmillan, I. O. Ellis, and A. R. Green, “Tumour-infiltrating macrophages and clinical outcome in breast cancer,” Journal of Clinical Pathology, vol. 65, no. 2, pp. 159–163, 2012. View at Google Scholar
  8. D. Laoui, K. Movahedi, E. Van Overmeire et al., “Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions,” The International Journal of Developmental Biology, vol. 55, no. 7–9, pp. 861–867, 2011. View at Google Scholar
  9. E. Y. Lin, A. V. Nguyen, R. G. Russell, and J. W. Pollard, “Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy,” Journal of Experimental Medicine, vol. 193, no. 6, pp. 727–740, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Y. Lin, V. Gouon-Evans, A. V. Nguyen, and J. W. Pollard, “The macrophage growth factor CSF-1 in mammary gland development and tumor progression,” Journal of Mammary Gland Biology and Neoplasia, vol. 7, no. 2, pp. 147–162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Z. Qian and J. W. Pollard, “Macrophage diversity enhances tumor progression and metastasis,” Cell, vol. 141, no. 1, pp. 39–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. P. Boland, I. S. Butt, R. Prasad, W. F. Knox, and N. J. Bundred, “COX-2 expression is associated with an aggressive phenotype in ductal carcinoma in situ,” British Journal of Cancer, vol. 90, no. 2, pp. 423–429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Shim, M. L. Gauthier, D. Sudilovsky et al., “Cyclooxygenase-2 expression is related to nuclear grade in ductal carcinoma in situ and is increased in its normal adjacent epithelium,” Cancer Research, vol. 63, no. 10, pp. 2347–2350, 2003. View at Google Scholar · View at Scopus
  14. D. J. Hiller, C. Meschonat, R. Kim, B. D. Li, and Q. D. Chu, “Chemokine receptor CXCR4 level in primary tumors independently predicts outcome for patients with locally advanced breast cancer,” Surgery, vol. 150, no. 3, pp. 459–465, 2011. View at Google Scholar
  15. C. C. Parker, R. H. Kim, B. D. Li, and Q. D. Chu, “The chemokine receptor CXCR4 as a novel independent prognostic marker for node-positive breast cancer patients,” Journal of Surgical Oncology, vol. 106, no. 4, pp. 393–398, 2012. View at Google Scholar
  16. S. L. F. Pender, M. T. Salmela, G. Monteleone et al., “Ligation of α4β1 integrin on human intestinal mucosal mesenchymal cells selectively up-regulates membrane type-1 matrix metalloproteinase and confers a migratory phenotype,” American Journal of Pathology, vol. 157, no. 6, pp. 1955–1962, 2000. View at Google Scholar · View at Scopus
  17. Z. Mi, S. D. Bhattacharya, V. M. Kim, H. Guo, L. J. Talbotq, and P. C. Kuo, “Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis,” Carcinogenesis, vol. 32, no. 4, pp. 477–487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. L. A. Shevde, S. Das, D. W. Clark, and R. S. Samant, “Osteopontin: an effector and an effect of tumor metastasis,” Current Molecular Medicine, vol. 10, no. 1, pp. 71–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Köhrmann, U. Kammerer, M. Kapp, J. Dietl, and J. Anacker, “Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: new findings and review of the literature,” BMC Cancer, vol. 9, article 188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Tang and X. Han, “The urokinase plasminogen activator system in breast cancer invasion and metastasis,” Biomedicine & Pharmacotherapy, vol. 67, no. 2, pp. 179–182, 2013. View at Google Scholar
  21. N. Harbeck, R. E. Kates, K. Gauger et al., “Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1: novel tumor-derived factors with a high prognostic and predictive impact in breast cancer,” Thrombosis and Haemostasis, vol. 91, no. 3, pp. 450–456, 2004. View at Google Scholar · View at Scopus
  22. T. Reinheckel, C. Peters, A. Kruger, B. Turk, and O. Vasiljeva, “Differential impact of cysteine cathepsins on genetic mouse models of de novo carcinogenesis: cathepsin B as emerging therapeutic target,” Frontiers in Pharmacology, vol. 3, article 133, 2012. View at Google Scholar
  23. J. A. Joyce, A. Baruch, K. Chehade et al., “Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis,” Cancer Cell, vol. 5, no. 5, pp. 443–453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Berchem, M. Glondu, M. Gleizes et al., “Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis,” Oncogene, vol. 21, no. 38, pp. 5951–5955, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Liaudet-Coopman, M. Beaujouin, D. Derocq et al., “Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis,” Cancer Letters, vol. 237, no. 2, pp. 167–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Benitez-Bribiesca, G. Martinez, M. T. Ruiz, F. Gutierrez-Delgado, and D. Utrera, “Proteinase activity in invasive cancer of the breast. Correlation with tumor progression,” Archives of Medical Research, vol. 26, pp. S163–S168, 1995. View at Google Scholar · View at Scopus
  27. M. Sameni, A. Anbalagan, M. B. Olive, K. Moin, R. R. Mattingly, and B. F. Sloane, “MAME models for 4D live-cell imaging of tumor: microenvironment interactions that impact malignant progression,” Journal of Visualized Experiments, vol. 60, article e3661, 2012. View at Publisher · View at Google Scholar
  28. N. A. Raof, W. K. Raja, J. Castracane, and Y. Xie, “Bioengineering embryonic stem cell microenvironments for exploring inhibitory effects on metastatic breast cancer cells,” Biomaterials, vol. 32, no. 17, pp. 4130–4139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Dittmer, A. Fuchs, I. Oerlecke et al., “Mesenchymal stem cells and carcinoma-associated fibroblasts sensitize breast cancer cells in 3D cultures to kinase inhibitors,” International Journal of Oncology, vol. 39, no. 3, pp. 689–696, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Krishnan, L. A. Shuman, D. M. Sosnoski, R. Dhurjati, E. A. Vogler, and A. M. Mastro, “Dynamic interaction between breast cancer cells and osteoblastic tissue: comparison of Two- and Three-dimensional cultures,” Journal of Cellular Physiology, vol. 226, no. 8, pp. 2150–2158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Debnath, S. K. Muthuswamy, and J. S. Brugge, “Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures,” Methods, vol. 30, no. 3, pp. 256–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Hebner, V. M. Weaver, and J. Debnath, “Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures,” Annual Review of Pathology, vol. 3, pp. 313–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. L. M. Privette Vinnedge, R. McClaine, P. K. Wagh, K. A. Wikenheiser-Brokamp, S. E. Waltz, and S. I. Wells, “The human DEK oncogene stimulates Β-catenin signaling, invasion and mammosphere formation in breast cancer,” Oncogene, vol. 30, no. 24, pp. 2741–2752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. K. B. Cho, M. K. Cho, W. Y. Lee, and K. W. Kang, “Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells,” Cancer Letters, vol. 293, no. 2, pp. 230–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Sameni, J. Dosescu, K. Moin, and B. F. Sloane, “Functional imaging of proteolysis: stromal and inflammatory cells increase tumor proteolysis,” Molecular Imaging, vol. 2, no. 3, pp. 159–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Sameni, J. Dosescu, K. M. Yamada, B. F. Sloane, and D. Cavallo-Medved, “Functional live-cell imaging demonstrates thatβ1-integrin promotes type IV collagen degradation by breast and prostate cancer cells,” Molecular Imaging, vol. 7, no. 5, pp. 199–213, 2008. View at Google Scholar · View at Scopus
  37. M. Lacroix and G. Leclercq, “Relevance of breast cancer cell lines as models for breast tumours: an update,” Breast Cancer Research and Treatment, vol. 83, no. 3, pp. 249–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. D. S. Micalizzi, S. M. Farabaugh, and H. L. Ford, “Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression,” Journal of Mammary Gland Biology and Neoplasia, vol. 15, no. 2, pp. 117–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Harris and P. Ralph, “Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines,” Journal of Leukocyte Biology, vol. 37, no. 4, pp. 407–422, 1985. View at Google Scholar · View at Scopus
  40. C. Bertram, N. von Neuhoff, B. Skawran, D. Steinemann, B. Schlegelberger, and R. Hass, “The differentiation/retrodifferentiation program of human U937 leukemia cells is accompanied by changes of VCP/p97,” BMC Cell Biology, vol. 9, article 12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Sameni, D. Cavallo-Medved, J. Dosescu et al., “Imaging and quantifying the dynamics of tumor-associated proteolysis,” Clinical and Experimental Metastasis, vol. 26, no. 4, pp. 299–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Y. Kim, H. Y. Yong, K. W. Kang, and A. Moon, “Overexpression of ErbB2 induces invasion of MCF10A human breast epithelial cells via MMP-9,” Cancer Letters, vol. 275, no. 2, pp. 227–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. G. K. Chimal-Ramírez, N. A. Espinoza-Sánchez, and E. M. Fuentes-Pananá, “Protumor activities of the immune response: insights in the mechanisms of immunological shift, oncotraining, and oncopromotion,” Journal of Oncology, vol. 2013, Article ID 835956, 16 pages, 2013. View at Publisher · View at Google Scholar
  44. J. W. Pollard, “Trophic macrophages in development and disease,” Nature Reviews Immunology, vol. 9, no. 4, pp. 259–270, 2009. View at Google Scholar
  45. R. D. Loberg, C. Ying, M. Craig, L. Yan, L. A. Snyder, and K. J. Pienta, “CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration,” Neoplasia, vol. 9, no. 7, pp. 556–562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Murdoch, S. Tazzyman, S. Webster, and C. E. Lewis, “Expression of Tie-2 by human monocytes and their responses to angiopoietin-2,” Journal of Immunology, vol. 178, no. 11, pp. 7405–7411, 2007. View at Google Scholar · View at Scopus
  47. E. Y. Lin and J. W. Pollard, “Tumor-associated macrophages press the angiogenic switch in breast cancer,” Cancer Research, vol. 67, no. 11, pp. 5064–5066, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Porta, B. Subhra Kumar, P. Larghi, L. Rubino, A. Mancino, and A. Sica, “Tumor promotion by tumor-associated macrophages,” Advances in Experimental Medicine and Biology, vol. 604, pp. 67–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. R. D. Leek, C. E. Lewis, R. Whitehouse, M. Greenall, J. Clarke, and A. L. Harris, “Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma,” Cancer Research, vol. 56, no. 20, pp. 4625–4629, 1996. View at Google Scholar · View at Scopus
  50. K. Lolmede, L. Campana, M. Vezzoli et al., “Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways,” Journal of Leukocyte Biology, vol. 85, no. 5, pp. 779–787, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, “Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes,” Trends in Immunology, vol. 23, no. 11, pp. 549–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Mantovani, S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati, “Macrophage plasticity and polarization in tissue repair and remodelling,” The Journal of Pathology, vol. 229, no. 2, pp. 176–185, 2013. View at Google Scholar
  53. A. Orimo, P. B. Gupta, D. C. Sgroi et al., “Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion,” Cell, vol. 121, no. 3, pp. 335–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Muller, B. Homey, H. Soto et al., “Involvement of chemokine receptors in breast cancer metastasis,” Nature, vol. 410, no. 6824, pp. 50–56, 2001. View at Google Scholar
  55. T. Mori, R. Doi, M. Koizumi et al., “CXCR4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer,” Molecular Cancer Therapeutics, vol. 3, no. 1, pp. 29–37, 2004. View at Google Scholar
  56. C. Chang and Z. Werb, “The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis,” Trends in Cell Biology, vol. 11, no. 11, pp. S37–S43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Egeblad and Z. Werb, “New functions for the matrix metalloproteinases in cancer progression,” Nature Reviews Cancer, vol. 2, no. 3, pp. 161–174, 2002. View at Google Scholar · View at Scopus
  58. D. Cao, K. Polyak, M. K. Halushka et al., “Serial analysis of gene expression of lobular carcinoma in situ identifies down regulation of claudin 4 and overexpression of matrix metalloproteinase 9,” Breast Cancer Research, vol. 10, no. 5, article R91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Qin, L. Liao, A. Redmond et al., “The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression,” Molecular and Cellular Biology, vol. 28, no. 19, pp. 5937–5950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Hagemann, S. C. Robinson, M. Schulz, L. Trümper, F. R. Balkwill, and C. Binder, “Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-α dependent up-regulation of matrix metalloproteases,” Carcinogenesis, vol. 25, no. 8, pp. 1543–1549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Poola, R. L. DeWitty, J. J. Marshalleck, R. Bhatnagar, J. Abraham, and L. D. Leffall, “Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis,” Nature Medicine, vol. 11, no. 5, pp. 481–483, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Condeelis and J. W. Pollard, “Macrophages: obligate partners for tumor cell migration, invasion, and metastasis,” Cell, vol. 124, no. 2, pp. 263–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Fuentes-Panana, M. Camorlinga-Ponce, and C. Maldonado-Bernal, “Infection, inflammation and gastric cancer,” Salud Pública de México, vol. 51, no. 5, pp. 427–433, 2009. View at Google Scholar
  64. M. Hu, G. Peluffo, H. Chen, R. Gelman, S. Schnitt, and K. Polyak, “Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3372–3377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Agarwal, G. V. Reddy, and P. Reddanna, “Eicosanoids in inflammation and cancer: the role of COX-2,” Expert Review of Clinical Immunology, vol. 5, no. 2, pp. 145–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Wang and R. N. Dubois, “Eicosanoids and cancer,” Nature Reviews Cancer, vol. 10, no. 3, pp. 181–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Cuzick, F. Otto, J. A. Baron et al., “Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement,” The Lancet Oncology, vol. 10, no. 5, pp. 501–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Ferrandez, E. Piazuelo, and A. Castells, “Aspirin and the prevention of colorectal cancer,” Best Practice & Research Clinical Gastroenterology, vol. 26, no. 2, pp. 185–195, 2012. View at Google Scholar
  69. J. Debnath and J. S. Brugge, “Modelling glandular epithelial cancers in three-dimensional cultures,” Nature Reviews Cancer, vol. 5, no. 9, pp. 675–688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. S. K. Muthuswamy, D. Li, S. Lelievre, M. J. Bissell, and J. S. Brugge, “ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini,” Nature Cell Biology, vol. 3, no. 9, pp. 785–792, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. J. I. Partanen, A. I. Nieminen, T. P. Mäkelä, and J. Klefstrom, “Suppression of oncogenic properties of c-Myc by LKB1-controlled epithelial organization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 37, pp. 14694–14699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. I. J. Fidler, “The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited,” Nature Reviews Cancer, vol. 3, no. 6, pp. 453–458, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. W. Tan, W. Zhang, A. Strasner et al., “Tumour-infiltrating regulatory T cells stimulate mammary cancermetastasis through RANKL-RANK signalling,” Nature, vol. 470, no. 7335, pp. 548–553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. R. N. Kaplan, R. D. Riba, S. Zacharoulis et al., “VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche,” Nature, vol. 438, no. 7069, pp. 820–827, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Shokeen, A. Zheleznyak, J. M. Wilson et al., “Molecular imaging of very late antigen-4 (alpha4beta1 integrin) in the premetastatic niche,” Journal of Nuclear Medicine, vol. 53, no. 5, pp. 779–786, 2012. View at Google Scholar