Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 295050, 10 pages
http://dx.doi.org/10.1155/2013/295050
Research Article

A New Protocol to Detect Multiple Foodborne Pathogens with PCR Dipstick DNA Chromatography after a Six-Hour Enrichment Culture in a Broad-Range Food Pathogen Enrichment Broth

1Division of Anaerobe Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
2Department of Microbiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
3Division of Food Hygiene, Department of Animal and Food Hygiene, Obihiro University of Agriculture & Veterinary Medicine Inada-cho, Obihiro, Hokkaido 080-8555, Japan
4Department of Domestic Science, Kyoto Seibo College, Kyoto 612-0878, Japan

Received 27 September 2013; Revised 5 November 2013; Accepted 5 November 2013

Academic Editor: Hiroshi Asakura

Copyright © 2013 Masahiro Hayashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Britton and J. Versalovic, “Probiotics and gastrointestinal infections,” Interdisciplinary Perspectives on Infectious Diseases, vol. 2008, Article ID 290769, 10 pages, 2008. View at Publisher · View at Google Scholar
  2. S. P. Oliver, B. M. Jayarao, and R. A. Almeida, “Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications,” Foodborne Pathogens and Disease, vol. 2, no. 2, pp. 115–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Amavisit, G. F. Browning, D. Lightfoot et al., “Rapid PCR detection of Salmonella in horse faecal samples,” Veterinary Microbiology, vol. 79, no. 1, pp. 63–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. G. D. Inglis and L. D. Kalischuk, “Direct quantification of Campylobacter jejuni and Campylobacter lanienae in feces of cattle by real-time quantitative PCR,” Applied and Environmental Microbiology, vol. 70, no. 4, pp. 2296–2306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. N. Sharpe, “Preparing samples for rapid detection of microbes,” in Rapid Methods and Automation in Microbiology and Immunology, Intercept Ltd., Andover, UK, 1994. View at Google Scholar
  6. B. Melero, L. Cocolin, K. Rantsiou, I. Jaime, and J. Rovira, “Comparison between conventional and qPCR methods for enumerating Campylobacter jejuni in a poultry processing plant,” Food Microbiology, vol. 28, no. 7, pp. 1353–1358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Rantsiou, C. Lamberti, and L. Cocolin, “Survey of Campylobacter jejuni in retail chicken meat products by application of a quantitative PCR protocol,” International Journal of Food Microbiology, vol. 141, pp. S75–S79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Swaminathan and P. Feng, “Rapid detection of food-borne pathogenic bacteria,” Annual Review of Microbiology, vol. 48, pp. 401–426, 1994. View at Google Scholar · View at Scopus
  9. M. Wagner, T. Potocnik, A. Lehner, J. Dengg, P. Pless, and E. Brandl, “A two step multiplex-seminested Polymerase Chain Reaction assay (m-sn PCR) for the simultaneous identification of four major foodborne pathogens,” Milchwissenschaft, vol. 55, no. 9, pp. 500–503, 2000. View at Google Scholar · View at Scopus
  10. Y. S. Park, S. R. Lee, and Y. G. Kim, “Detection of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes in Kimchi by multiplex polymerase chain reaction (mPCR),” Journal of Microbiology, vol. 44, no. 1, pp. 92–97, 2006. View at Google Scholar · View at Scopus
  11. R. D. Oberst, M. P. Hays, L. K. Bohra et al., “PCR-based DNA amplification and presumptive detection of Escherichia coli O157:H7 with an internal fluorogenic probe and the 5' nuclease (TaqMan) assay,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3389–3396, 1998. View at Google Scholar · View at Scopus
  12. B. Kimura, S. Kawasaki, T. Fujii, J. Kusunoki, T. Itoh, and S. J. A. Flood, “Evaluation of TaqMan PCR assay for detecting Salmonella in raw meat and shrimp,” Journal of Food Protection, vol. 62, no. 4, pp. 329–335, 1999. View at Google Scholar · View at Scopus
  13. Y. Yuan, W. Xu, Z. Zhai et al., “Universal primer-multiplex pcr approach for simultaneous detection of Escherichia coli, Listeria monocytogenes, and Salmonella spp. in food samples,” Journal of Food Science, vol. 74, no. 8, pp. M446–M452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Hayashi, S. Kubota-Hayashi, T. Natori et al., “Use of blood-free enrichment broth in the development of a rapid protocol to detect Campylobacter in twenty-five grams of chicken meat,” International Journal of Food Microbiology, vol. 163, no. 1, pp. 41–46, 2013. View at Publisher · View at Google Scholar
  15. J. O'Leary, D. Corcoran, and B. Lucey, “Comparison of the EntericBio multiplex PCR system with routine culture for detection of bacterial enteric pathogens,” Journal of Clinical Microbiology, vol. 47, no. 11, pp. 3449–3453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Sethabutr, M. Venkatesan, G. S. Murphy, B. Eampokalap, C. W. Hoge, and P. Echeverria, “Detection of shigellae and enteroinvasive Escherichia coli by amplification of the invasion plasmid antigen H DNA sequence in patients with dysentery,” Journal of Infectious Diseases, vol. 167, no. 2, pp. 458–461, 1993. View at Google Scholar · View at Scopus
  17. E. O'Regan, E. McCabe, C. Burgess et al., “Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples,” BMC Microbiology, vol. 8, article 156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. H. Lee, B. Y. Jung, N. Rayamahji et al., “A multiplex real-time PCR for differential detection and quantification of Salmonella spp., Salmonella enterica serovar Typhimurium and Enteritidis in meats,” Journal of Veterinary Science, vol. 10, no. 1, pp. 43–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. E. Galan, C. Ginocchio, and P. Costeas, “Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family,” Journal of Bacteriology, vol. 174, no. 13, pp. 4338–4349, 1992. View at Google Scholar · View at Scopus
  20. J. Hoorfar, P. Ahrens, and P. Radstrom, “Automated 5' nuclease PCR assay for identification of Salmonella enterica,” Journal of Clinical Microbiology, vol. 38, no. 9, pp. 3429–3435, 2000. View at Google Scholar · View at Scopus
  21. “Microbiology of food and animal feeding stuffs. Polymerase chain reaction (PCR) for the detection of foodborne pathogens. General method specific requirements,” Draft International Standard EN ISO 22174, International Organization for Standardization, Geneva, Switzerland, 2002.
  22. I. Abubakar, L. Irvine, C. F. Aldus et al., “A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food,” Health Technology Assessment, vol. 11, no. 36, pp. 1–216, 2007. View at Google Scholar · View at Scopus