Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 305704, 4 pages
Research Article

Validation of New Allele-Specific Real-Time PCR System for Thiopurine Methyltransferase Genotyping in Korean Population

1Department of Laboratory Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Joowha-ro 170, Ilsanseo-gu, Goyang, Gyeonggi, Republic of Korea
2Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea

Received 15 November 2012; Accepted 29 January 2013

Academic Editor: Andrew St. John

Copyright © 2013 Sollip Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Introduction. Thiopurine drugs are metabolized via S-methylation and catalyzed by thiopurine S-methyltransferase (TPMT). Patients with very low TPMT activity are at high risk of fatal bone marrow toxicity when standard doses of thiopurine drugs are administered. TPMT genotyping can predict TPMT activity and is not affected by transfusion or red blood cell defects. Here, we report a new allele-specific real-time polymerase chain reaction (PCR) system for thiopurine methyltransferase genotyping that is validated in Korean population. Materials and Methods. Three major TPMT single-nucleotide polymorphisms (TPMT*2, *3B, and *3C) were genotyped using real-time PCR with the allele-specific primers and probes. Internal positive controls were included in each well, and an automatic interpretative algorithm was applied. This system was validated using 244 clinical samples and 2 commercial DNA samples that had been previously genotyped using PCR-direct sequencing. Results. All of the obtained results are concordant with those of the reference method. All of the internal positive control reactions were successful. The allele frequency of TPMT*3C was 2.05% (10 of 488 alleles). All of the patients with variant alleles were heterozygotes, and no homozygotes were detected. No TPMT*2, *3A, or *3B alleles were observed in this Korean population. Conclusion. This rapid, accurate, and user-friendly genotyping system can be readily used to improve the efficacy and safety of thiopurine treatments in clinical practice.