Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 358902, 9 pages
http://dx.doi.org/10.1155/2013/358902
Review Article

The Function of miRNA in Hepatic Cancer Stem Cell

1Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 23000, China
2School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
3Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, Hong Kong

Received 3 June 2013; Revised 27 October 2013; Accepted 8 November 2013

Academic Editor: Manoor Prakash Hande

Copyright © 2013 Wei Qi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. B. J. Reinhart, F. J. Slack, M. Basson et al., “The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans,” Nature, vol. 403, no. 6772, pp. 901–906, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Rosa and A. H. Brivanlou, “MicroRNAs in early vertebrate development,” Cell Cycle, vol. 8, no. 21, pp. 3513–3520, 2009. View at Google Scholar · View at Scopus
  4. M. R. Fabian and N. Sonenberg, “The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC,” Nature Structural & Molecular Biology, vol. 19, no. 6, pp. 586–593, 2012. View at Google Scholar
  5. A. Pauli, J. L. Rinn, and A. F. Schier, “Non-coding RNAs as regulators of embryogenesis,” Nature Reviews Genetics, vol. 12, no. 2, pp. 136–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Rinn and H. Y. Chang, “Genome regulation by long noncoding RNAs,” Annual Review of Biochemistry, vol. 81, pp. 145–166, 2012. View at Google Scholar
  7. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by MicroRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Berezikov, V. Guryev, J. van de Belt, E. Wienholds, R. H. A. Plasterk, and E. Cuppen, “Phylogenetic shadowing and computational identification of human MicroRNA genes,” Cell, vol. 120, no. 1, pp. 21–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Bentwich, A. Avniel, Y. Karov et al., “Identification of hundreds of conserved and nonconserved human MicroRNAs,” Nature Genetics, vol. 37, no. 7, pp. 766–770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Garzon, G. A. Calin, and C. M. Croce, “MicroRNAs in cancer,” Annual Review of Medicine, vol. 60, pp. 167–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. G. M. Borchert, W. Lanier, and B. L. Davidson, “RNA polymerase III transcribes human MicroRNAs,” Nature Structural & Molecular Biology, vol. 13, no. 12, pp. 1097–1101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Lee, M. Kim, J. Han et al., “MicroRNA genes are transcribed by RNA polymerase II,” The EMBO Journal, vol. 23, no. 20, pp. 4051–4060, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Cai, C. H. Hagedorn, and B. R. Cullen, “Human MicroRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs,” RNA, vol. 10, no. 12, pp. 1957–1966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Lee, C. Ahn, J. Han et al., “The nuclear RNase III Drosha initiates MicroRNA processing,” Nature, vol. 425, no. 6956, pp. 415–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. G. Ruby, C. H. Jan, and D. P. Bartel, “Intronic MicroRNA precursors that bypass Drosha processing,” Nature, vol. 448, no. 7149, pp. 83–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Berezikov, W.-J. Chung, J. Willis, E. Cuppen, and E. C. Lai, “Mammalian mirtron genes,” Molecular Cell, vol. 28, no. 2, pp. 328–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Yi, Y. Qin, I. G. Macara, and B. R. Cullen, “Exportin-5 mediates the nuclear export of pre-MicroRNAs and short hairpin RNAs,” Genes and Development, vol. 17, no. 24, pp. 3011–3016, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Vasudevan, Y. Tong, and J. A. Steitz, “Switching from repression to activation: MicroRNAs can up-regulate translation,” Science, vol. 318, no. 5858, pp. 1931–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. U. A. Ørom, F. C. Nielsen, and A. H. Lund, “MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation,” Molecular Cell, vol. 30, no. 4, pp. 460–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. I. Henke, D. Goergen, J. Zheng et al., “MicroRNA-122 stimulates translation of hepatitis C virus RNA,” The EMBO Journal, vol. 27, no. 24, pp. 3300–3310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. B. A. Janowski, S. T. Younger, D. B. Hardy, R. Ram, K. E. Huffman, and D. R. Corey, “Activating gene expression in mammalian cells with promoter-targeted duplex RNAs,” Nature Chemical Biology, vol. 3, no. 3, pp. 166–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. L.-C. Li, S. T. Okino, H. Zhao et al., “Small dsRNAs induce transcriptional activation in human cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17337–17342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. R. F. Place, L.-C. Li, D. Pookot, E. J. Noonan, and R. Dahiya, “MicroRNA-373 induces expression of genes with complementary promoter sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1608–1613, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Huang, R. F. Place, V. Portnoy et al., “Upregulation of cyclin B1 by miRNA and its implications in cancer,” Nucleic Acids Research, vol. 40, no. 4, pp. 1695–1707, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Bernstein, S. Y. Kim, M. A. Carmell et al., “Dicer is essential for mouse development,” Nature Genetics, vol. 35, no. 3, pp. 215–217, 2003. View at Google Scholar
  27. C. Kanellopoulou, S. A. Muljo, A. L. Kung et al., “Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing,” Genes and Development, vol. 19, no. 4, pp. 489–501, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Wang, R. Medvid, C. Melton, R. Jaenisch, and R. Blelloch, “DGCR8 is essential for MicroRNA biogenesis and silencing of embryonic stem cell self-renewal,” Nature Genetics, vol. 39, no. 3, pp. 380–385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Huangfu, R. Maehr, W. Guo et al., “Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds,” Nature Biotechnology, vol. 26, no. 7, pp. 795–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Wang, K. Chen, X. Zeng et al., “The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner,” Cell Stem Cell, vol. 9, no. 6, pp. 575–587, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. R. L. Judson, J. E. Babiarz, M. Venere, and R. Blelloch, “Embryonic stem cell-specific MicroRNAs promote induced pluripotency,” Nature Biotechnology, vol. 27, no. 5, pp. 459–461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Anokye-Danso, C. M. Trivedi, D. Juhr et al., “Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency,” Cell Stem Cell, vol. 8, no. 4, pp. 376–388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. D. A. G. Card, P. B. Hebbar, L. Li et al., “Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cell,” Molecular and Cellular Biology, vol. 28, no. 20, pp. 6426–6438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Marson, S. S. Levine, M. F. Cole et al., “Connecting MicroRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells,” Cell, vol. 134, no. 3, pp. 521–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Tay, J. Zhang, A. M. Thomson, B. Lim, and I. Rigoutsos, “MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation,” Nature, vol. 455, no. 7216, pp. 1124–1128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. R. Viswanathan, G. Q. Daley, and R. I. Gregory, “Selective blockade of MicroRNA processing by Lin28,” Science, vol. 320, no. 5872, pp. 97–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Heo, C. Joo, J. Cho, M. Ha, J. Han, and V. N. Kim, “Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA,” Molecular Cell, vol. 32, no. 2, pp. 276–284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Newman, J. M. Thomson, and S. M. Hammond, “Lin-28 interaction with the Let-7 precursor loop mediates regulated MicroRNA processing,” RNA, vol. 14, no. 8, pp. 1539–1549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Rybak, H. Fuchs, L. Smirnova et al., “A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment,” Nature Cell Biology, vol. 10, no. 8, pp. 987–993, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. T. M. Block, A. S. Mehta, C. J. Fimmel, and R. Jordan, “Molecular viral oncology of hepatocellular carcinoma,” Oncogene, vol. 22, no. 33, pp. 5093–5107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Pons, M. Varela, and J. M. Llovet, “Staging systems in hepatocellular carcinoma,” HPB, vol. 7, no. 1, pp. 35–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. W. T. Kassahun, J. Fangmann, J. Harms, J. Hauss, and M. Bartels, “Liver resection and transplantation in the management of hepatocellular carcinoma: a review,” Experimental and Clinical Transplantation, vol. 4, no. 2, pp. 549–558, 2006. View at Google Scholar · View at Scopus
  45. M. T. Kuo, “Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 11, no. 1, pp. 99–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Morrison, S. M. Schleicher, Y. Sun et al., “Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis,” Journal of Oncology, vol. 2011, Article ID 941876, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. S. A. Gonzalez and E. B. Keeffe, “Diagnosis of hepatocellular carcinoma: role of tumor markers and liver biopsy,” Clinics in Liver Disease, vol. 15, no. 2, pp. 297–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Ma, K.-W. Chan, L. Hu et al., “Identification and characterization of tumorigenic liver cancer stem/progenitor cells,” Gastroenterology, vol. 132, no. 7, pp. 2542–2556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Chen, X. Zhang, C. Chu et al., “Identification of CD44+ cancer stem cells in human gastric cancer,” Hepato-gastroenterology, vol. 60, no. 127, pp. 949–954, 2013. View at Google Scholar
  50. Y. Wang, Y. Yu, A. Tsuyada et al., “Transforming growth factor-Β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM,” Oncogene, vol. 30, no. 12, pp. 1470–1480, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. P. B. Gupta, T. T. Onder, G. Jiang et al., “Identification of selective inhibitors of cancer stem cells by high-throughput screening,” Cell, vol. 138, no. 4, pp. 645–659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. Z. Huang, L. Cheng, O. A. Guryanova, Q. Wu, and S. Bao, “Cancer stem cells in glioblastoma-molecular signaling and therapeutic targeting,” Protein and Cell, vol. 1, no. 7, pp. 638–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. J. C. Y. Wang and J. E. Dick, “Cancer stem cells: lessons from leukemia,” Trends in Cell Biology, vol. 15, no. 9, pp. 494–501, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. E. S. Polson, J. L. Lewis, H. Celik et al., “Monoallelic expression of TMPRSS2/ERG in prostate cancer stem cells,” Nature Communications, vol. 4, article 1623, 2013. View at Google Scholar
  55. M. S. Schieber and N. S. Chandel, “ROS links glucose metabolism to breast cancer stem cell and EMT phenotype,” Cancer Cell, vol. 23, no. 3, pp. 265–267, 2013. View at Google Scholar
  56. S. Akunuru, Q. James Zhai, and Y. Zheng, “Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity,” Cell Death & Disease, vol. 3, article e352, 2012. View at Google Scholar
  57. J. Lu, X. Ye, F. Fan et al., “Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1,” Cancer Cell, vol. 23, no. 2, pp. 171–185, 2013. View at Google Scholar
  58. S. Ma, T. K. Lee, B.-J. Zheng, K. W. Chan, and X.-Y. Guan, “CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway,” Oncogene, vol. 27, no. 12, pp. 1749–1758, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. W. C. Hahn, C. M. Counter, A. S. Lundberg, R. L. Beijersbergen, M. W. Brooks, and R. A. Weinberg, “Creation of human tumour cells with defined genetic elements,” Nature, vol. 400, no. 6743, pp. 464–468, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Chiba, K. Kita, Y.-W. Zheng et al., “Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties,” Hepatology, vol. 44, no. 1, pp. 240–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Muramatsu, S. Tanaka, K. Mogushi et al., “Visualization of stem cell features in human hepatocellular carcinoma reveals in vivo significance of tumor-host interaction and clinical course,” Hepatology, vol. 58, no. 1, pp. 218–228, 2013. View at Publisher · View at Google Scholar
  62. D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi, and D. P. Bartel, “The impact of MicroRNAs on protein output,” Nature, vol. 455, no. 7209, pp. 64–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin, and N. Rajewsky, “Widespread changes in protein synthesis induced by MicroRNAs,” Nature, vol. 455, no. 7209, pp. 58–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Gramantieri, M. Ferracin, F. Fornari et al., “Cyclin G1 is a target of miR-122a, a MicroRNA frequently down-regulated in human hepatocellular carcinoma,” Cancer Research, vol. 67, no. 13, pp. 6092–6099, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Wang, A. T. C. Lee, J. Z. I. Ma et al., “Profiling MicroRNA expression in hepatocellular carcinoma reveals MicroRNA-224 up-regulation and apoptosis inhibitor-5 as a MicroRNA-224-specific target,” Journal of Biological Chemistry, vol. 283, no. 19, pp. 13205–13215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. Q. W.-L. Wong, R. W.-M. Lung, P. T.-Y. Law et al., “MicroRNA-223 Is commonly repressed in hepatocellular carcinoma and potentiates expression of stathmin1,” Gastroenterology, vol. 135, no. 1, pp. 257–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Budhu, H.-L. Jia, M. Forgues et al., “Identification of metastasis-related MicroRNAs in hepatocellular carcinoma,” Hepatology, vol. 47, no. 3, pp. 897–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Fornari, L. Gramantieri, M. Ferracin et al., “miR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma,” Oncogene, vol. 27, no. 43, pp. 5651–5661, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Ji, T. Yamashita, A. Budhu et al., “Identification of MicroRNA-181 by genome-wide screening as a critical player in EpCAM—positive hepatic cancer stem cells,” Hepatology, vol. 50, no. 2, pp. 472–480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Meng, S. S. Glaser, H. Francis et al., “Functional analysis of MicroRNAs in human hepatocellular cancer stem cells,” Journal of Cellular and Molecular Medicine, vol. 16, no. 1, pp. 160–173, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Yamashita, M. Forgues, W. Wang et al., “EpCAM and α-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma,” Cancer Research, vol. 68, no. 5, pp. 1451–1461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Yamashita, J. Ji, A. Budhu et al., “EpCAM-Positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features,” Gastroenterology, vol. 136, no. 3, pp. 1012.e4–1024.e4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. M. S. Kumar, S. J. Erkeland, R. E. Pester et al., “Suppression of non-small cell lung tumor development by the let-7 MicroRNA family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3903–3908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Kota, R. R. Chivukula, K. A. O'Donnell et al., “Therapeutic MicroRNA delivery suppresses tumorigenesis in a murine liver cancer model,” Cell, vol. 137, no. 6, pp. 1005–1017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. J.-K. Park, T. Kogure, G. J. Nuovo et al., “miR-221 silencing blocks hepatocellular carcinoma and promotes survival,” Cancer Research, vol. 71, no. 24, pp. 7608–7616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. E. Callegari, B. K. Elamin, F. Giannone et al., “Liver tumorigenicity promoted by MicroRNA-221 in a mouse transgenic model,” Hepatology, vol. 56, no. 3, pp. 1025–1033, 2012. View at Google Scholar
  78. W.-C. Tsai, P. W.-C. Hsu, T.-C. Lai et al., “MicroRNA-122, a tumor suppressor MicroRNA that regulates intrahepatic metastasis of hepatocellular carcinoma,” Hepatology, vol. 49, no. 5, pp. 1571–1582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. Q. Lang and C. Ling, “miR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA,” Biochemical and Biophysical Research Communications, vol. 426, no. 2, pp. 247–252, 2012. View at Google Scholar
  80. X. Zhang, S. Liu, T. Hu, S. Liu, Y. He, and S. Sun, “Up-regulated MicroRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression,” Hepatology, vol. 50, no. 2, pp. 490–499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. Q.-H. Ye, L.-X. Qin, M. Forgues et al., “Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning,” Nature Medicine, vol. 9, no. 4, pp. 416–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. B.-S. Sun, Q.-Z. Dong, Q.-H. Ye et al., “Lentiviral-mediated miRNA against osteopontin suppresses tumor growth and metastasis of human hepatocellular carcinoma,” Hepatology, vol. 48, no. 6, pp. 1834–1842, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Tomimaru, H. Eguchi, H. Nagano et al., “MicroRNA-21 induces resistance to the anti-tumour effect of interferon-α/5-fluorouracil in hepatocellular carcinoma cells,” British Journal of Cancer, vol. 103, no. 10, pp. 1617–1626, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Su, J.-R. Yang, T. Xu et al., “MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity,” Cancer Research, vol. 69, no. 3, pp. 1135–1142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Yorimitsu and D. J. Klionsky, “Autophagy: molecular machinery for self-eating,” Cell Death and Differentiation, vol. 12, supplement 2, pp. 1542–1552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. L. B. Frankel and A. H. Lund, “MicroRNA regulation of autophagy,” Carcinogenesis, vol. 33, no. 11, pp. 2018–2025, 2012. View at Google Scholar
  87. J. Cui, Z. Gong, and H. M. Shen, “The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets,” Biochimica et Biophysica Acta, vol. 1836, no. 1, pp. 15–26, 2013. View at Google Scholar
  88. F. Yang, Y. Yin, F. Wang et al., “miR-17-5p promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway,” Hepatology, vol. 51, no. 5, pp. 1614–1623, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Li, W. Tan, T. W. L. Neo et al., “Role of the miR-106b-25 MicroRNA cluster in hepatocellular carcinoma,” Cancer Science, vol. 100, no. 7, pp. 1234–1242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Meenhuis, P. A. van Veelen, H. de Looper et al., “miR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice,” Blood, vol. 118, no. 4, pp. 916–925, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. X. Peng, W. Li, L. Yuan, R. G. Mehta, L. Kopelovich, and D. L. McCormick, “Inhibition of proliferation and induction of autophagy by atorvastatin in PC3 prostate cancer cells correlate with downregulation of Bcl2 and upregulation of miR-182 and p21,” PLoS One, vol. 8, no. 8, Article ID e70442, 2013. View at Google Scholar
  92. P. Wang, J. Zhang, L. Zhang et al., “MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells,” Gastroenterology, vol. 145, no. 5, pp. 1133.e12–1143.e12, 2013. View at Google Scholar
  93. H. Tazawa, S. Yano, R. Yoshida et al., “Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1-MicroRNA-7-epidermal growth factor receptor axis,” International Journal of Cancer, vol. 131, no. 12, pp. 2939–2950, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. S. H. Lan, S. Y. Wu, R. Zuchini et al., “Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of miR-224,” Hepatology, 2013. View at Publisher · View at Google Scholar
  95. Z. Zou, L. Wu, H. Ding et al., “MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy,” Journal of Biological Chemistry, vol. 287, no. 6, pp. 4148–4156, 2012. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Yu, L. Yang, M. Zhao et al., “Targeting MicroRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells,” Leukemia, vol. 26, no. 8, pp. 1752–1760, 2012. View at Publisher · View at Google Scholar · View at Scopus