Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 373412, 8 pages
http://dx.doi.org/10.1155/2013/373412
Research Article

Performance Study of Chromium (VI) Removal in Presence of Phenol in a Continuous Packed Bed Reactor by Escherichia coli Isolated from East Calcutta Wetlands

1Department of Biotechnology, Heritage Institute of Technology, Chowbaga Road, Anandapur, Kolkata 700107, India
2Department of Food Technology and Biochemical Engineering, Jadavpur University, S. C. Mallik Road, Kolkata 700032, India

Received 26 April 2013; Revised 22 July 2013; Accepted 23 July 2013

Academic Editor: Kannan Pakshirajan

Copyright © 2013 Bhaswati Chakraborty et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Pandey, D. Bera, A. Shukla, and L. Ray, “Studies on Cr(VI), Pb(II) and Cu(II) adsorption-desorption using calcium alginate as biopolymer,” Chemical Speciation and Bioavailability, vol. 19, no. 1, pp. 17–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Bera, P. Chattopadhyay, and L. Ray, “Continuous removal of chromium from tannery wastewater using activated sludge process-Determination of kinetic parameters,” Indian Journal of Chemical Technology, vol. 19, no. 1, pp. 32–36, 2012. View at Google Scholar · View at Scopus
  3. S. R. Popuri, S. Kalyani, S. R. Kachireddy, and A. Krishnaiah, “Biosorption of hexavalent chromium from aqueous solution by using prawn pond algae (Sphaeroplea),” Indian Journal of Chemistry, vol. 46, no. 2, pp. 284–289, 2007. View at Google Scholar · View at Scopus
  4. J. W. Moore and S. Ramamurthy, Organic Chemicals in Natural Water, Applied Monitoring and Impact Assessment, Springer, New York, NY, USA, 1984.
  5. NAS, Medical and Biologic Effects of Environmental Pollutants, National Academy of Sciences, Washington, DC, USA, 1974.
  6. S. Sharma and A. Adholeya, “Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi,” International Biodeterioration and Biodegradation, vol. 65, no. 2, pp. 309–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. P. E. Enterline, “Respiratory cancer among chromate workers,” Journal of Occupational Medicine, vol. 16, no. 8, pp. 523–526, 1974. View at Google Scholar · View at Scopus
  8. F. J. Roe and R. L. Carter, “Chromium carcinogenesis: calcium chromate as a potent carcinogen for the subcutaneous tissues of the rat,” British Journal of Cancer, vol. 23, no. 1, pp. 172–176, 1969. View at Google Scholar · View at Scopus
  9. H. Nishioka, “Mutagenic activities of metal compounds in bacteria,” Mutation Research, vol. 31, no. 3, pp. 185–189, 1975. View at Google Scholar · View at Scopus
  10. A. J. Mearns, P. S. Oshida, and M. J. Sherwood, “Chromium effects on coastal organisms,” Journal of the Water Pollution Control Federation, vol. 48, no. 8, pp. 1929–1939, 1976. View at Google Scholar · View at Scopus
  11. A. I. Zouboulis, M. X. Loukidou, and K. A. Matis, “Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils,” Process Biochemistry, vol. 39, no. 8, pp. 909–916, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Chen and G. Gu, “Preliminary studies on continuous chromium (VI) biological removal from wastewater by anaerobic-aerobic activated sludge process,” Bioresource Technology, vol. 96, no. 15, pp. 1713–1721, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Sultan and S. Hasnain, “Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals,” Bioresource Technology, vol. 98, no. 2, pp. 340–344, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Baral and R. D. Engelken, “Chromium-based regulations and greening in metal finishing industries in the USA,” Environmental Science and Policy, vol. 5, no. 2, pp. 121–133, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. S. Ahluwalia and D. Goyal, “Microbial and plant derived biomass for removal of heavy metals from wastewater,” Bioresource Technology, vol. 98, no. 12, pp. 2243–2257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Quintelas, B. Fernandes, J. Castro, H. Figueiredo, and T. Tavares, “Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon—a comparative study,” Journal of Hazardous Materials, vol. 153, no. 1-2, pp. 799–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Fude, B. Harris, M. M. Urrutia, and T. J. Beveridge, “Reduction of Cr(VI) by a consortium of sulfate-reducing bacteria (SRB III),” Applied and Environmental Microbiology, vol. 60, no. 5, pp. 1525–1531, 1994. View at Google Scholar · View at Scopus
  18. D. C. Sharma and C. F. Forster, “Removal of hexavalent chromium using sphagnum moss peat,” Water Research, vol. 27, no. 7, pp. 1201–1208, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Shen and Y. T. Wang, “Biological reduction of chromium by E. coli,” Journal of Environmental Engineering, vol. 120, no. 3, pp. 560–572, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Shen and Y. T. Wang, “Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456,” Applied and Environmental Microbiology, vol. 59, no. 11, pp. 3771–3777, 1993. View at Google Scholar · View at Scopus
  21. “Pollutants in tannery effluents,” UNIDO/US/RAS/92/120, 2000.
  22. Standard Methods for the Examination of Water and wasteWaters, APHA (American Public Health Association), AWWA (American water Works Association) and AEF (American Environment Federation), Washington, DC, USA, 20th edition, 1998.
  23. M. D. Lilly, W. E. Hornby, and E. M. Crook, “The kinetics of carboxymethylcellulose—ficin in packed beds,” Biochemical Journal, vol. 100, no. 3, pp. 718–723, 1966. View at Google Scholar · View at Scopus
  24. F. N. Kök, M. Y. Arica, C. Halıcıgil, G. Alaeddinoğlu, and V. Hasırcı, “Biodegradation of aldicarb in a packed-bed reactor by immobilized Methylosinus,” Enzyme and Microbial Technology, vol. 24, no. 5-6, pp. 291–296, 1999. View at Publisher · View at Google Scholar
  25. P. F. Stanbury, A. Whitaker, and S. J. Hall, Principle of Fermentation Technology, Butterworth-Heinemann, 2nd edition, 2008.
  26. M. T. Nguyen, “The effect of temperature on the growth of the bacteria Escherichia coli DH5a,” Saint Martin’s University Biology Journal, vol. 1, pp. 87–94, 2006. View at Google Scholar
  27. K. Kovářová, A. J. B. Zehnder, and T. Egli, “Temperature-dependent growth kinetics of Escherichia coli ML 30 in glucose-limited continuous culture,” Journal of Bacteriology, vol. 178, no. 15, pp. 4530–4539, 1996. View at Google Scholar · View at Scopus
  28. S. L. Herendeen, R. A. VanBogelen, and F. C. Neidhardt, “Levels of major proteins of Escherichia coli during growth at different temperatures,” Journal of Bacteriology, vol. 139, no. 1, pp. 185–194, 1979. View at Google Scholar · View at Scopus
  29. Y. Sun, T. Fukamachi, H. Saito, and H. Kobayashi, “Respiration and the F1Fo-ATPase enhance survival under acidic conditions in Escherichia coli,” PLoS ONE, vol. 7, no. 12, Article ID e52577, 2012. View at Publisher · View at Google Scholar
  30. K. N. Jordan, L. Oxford, and C. P. O'Byrne, “Survival of low-pH stress by Escherichia coli O157:H7: correlation between alterations in the cell envelope and increased acid tolerance,” Applied and Environmental Microbiology, vol. 65, no. 7, pp. 3048–3055, 1999. View at Google Scholar · View at Scopus
  31. Y. Sun, T. Fukamachi, H. Saito, and H. Kobayashi, “Atp requirement for acidic resistance in Escherichia coli,” Journal of Bacteriology, vol. 193, no. 12, pp. 3072–3077, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Ilhan, M. N. Nourbakhsh, S. Kilicharslan, and H. Ozdag, “Removal of chromium, lead and copper ions from industrial wastewaters by Staphylococcus saprophyticus,” Turkish Electronic Journal of Biotechnology, vol. 2, pp. 50–57, 2004. View at Google Scholar
  33. A. Kumar, B. S. Bisht, and B. D. Joshi, “Bioremediation potential of three acclimated bacteria with reference to heavy metal removal from waste,” International Journal of Environmental Sciences, vol. 2, no. 2, pp. 896–908, 2011. View at Google Scholar
  34. A. Smrithi and K. Usha, “Isolation and characterization of chromium removing bacteria from tannery effluent disposal site,” International Journal of Advanced Biotechnology and Research, vol. 3, no. 3, pp. 644–652, 2012. View at Google Scholar
  35. A. L. Rengifo-Gallego, E. Pena-Salamanca, and N. Benitez-Campo, “The effect of chromium removal by algae-bacteria Bostrychia calliptera (Rhodomelaceae) consortia under laboratory conditions,” Revista de Biologia Tropica, vol. 60, no. 3, pp. 1055–1064, 2012. View at Google Scholar