Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 384091, 9 pages
http://dx.doi.org/10.1155/2013/384091
Research Article

Salamander-Derived, Human-Optimized nAG Protein Suppresses Collagen Synthesis and Increases Collagen Degradation in Primary Human Fibroblasts

1Department of Surgery, King Saud University, Riyadh, Saudi Arabia
2College of Medicine Research Center, King Saud University, Riyadh, Saudi Arabia
3Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
4Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark

Received 8 July 2013; Revised 15 September 2013; Accepted 19 September 2013

Academic Editor: Dong-Wook Han

Copyright © 2013 Mohammad M. Al-Qattan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. F. Williams, S. Risk, and D. P. Martin, “Poly-4 hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissure repair and regeneration,” Biomedizinische Technik, vol. 58, no. 5, pp. 439–452, 2013. View at Publisher · View at Google Scholar
  2. M. Saclier, S. Cuvellier, M. Magnan, R. Mounier, and B. Chazaud, “Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration,” FEBS Journal, vol. 280, no. 17, pp. 4118–4130, 2013. View at Publisher · View at Google Scholar
  3. G. Millet, S. Truant, E. Leteurtre et al., “Volumetric analysis of remnant liver regeneration after major hepatectomy in bevacizumab-treated patients: a case-matched study in 82 patients,” Annals of Surgery, vol. 256, no. 5, pp. 755–761, 2012. View at Google Scholar
  4. P. T. Brown, A. M. Handorf, W. B. Jeon, and W. J. Li, “Stem cell-based tissue engineering approaches for musculoskeletal regeneration,” Current Pharmaceutical Design, vol. 19, no. 19, pp. 3429–3445, 2013. View at Google Scholar
  5. R. Lakshmanan, U. M. Kirishran, and S. Sethuraman, “Polymeric scaffold aided stem cell therapeutics for cardiac muscle repair and regeneration,” Macromolecular Bioscience, vol. 13, no. 9, pp. 1119–1134, 2013. View at Publisher · View at Google Scholar
  6. A. J. Singer and R. A. F. Clark, “Cutaneous wound healing,” The New England Journal of Medicine, vol. 341, no. 10, pp. 738–746, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. T. A. Mustoe, R. D. Cooter, M. H. Gold et al., “International clinical recommendations on scar management,” Plastic and Reconstructive Surgery, vol. 110, no. 2, pp. 560–571, 2002. View at Google Scholar · View at Scopus
  8. M. M. Al-Qattan, “Factors in the pathogenesis of Dupuytren's contracture,” Journal of Hand Surgery, vol. 31, no. 9, pp. 1527–1534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Couluris, B. W. Kinder, P. Xu et al., “Treatment of idiopathic pulmonary fibrosis with losartan: a pilot project,” Lung, vol. 190, no. 5, pp. 523–527, 2012. View at Google Scholar
  10. Z. Dai, T. Aoki, Y. Fukumoto, and H. Shimokaw, “Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure,” Journal of Cardiology, vol. 60, no. 5, pp. 416–421, 2012. View at Publisher · View at Google Scholar
  11. T. Liu, X. Wang, M. A. Karsdal et al., “Molecular serum markers of liver fibrosis,” Biomarker Insights, vol. 7, pp. 105–117, 2012. View at Google Scholar
  12. A. Kumar, J. W. Godwin, P. B. Gates, A. A. Garza-Garcia, and J. P. Brockes, “Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate,” Science, vol. 318, no. 5851, pp. 772–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kumar, G. Nevill, J. P. Brockes, and A. Forge, “A comparative study of gland cells implicated in the nerve dependence of salamander limb regeneration,” Journal of Anatomy, vol. 217, no. 1, pp. 16–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Brockes, “Amphibian limb regeneration: rebuilding a complex structure,” Science, vol. 276, no. 5309, pp. 81–87, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. J. F. Brockes and A. Kumar, “Appendage regeneration in adult vertebrates and implications for regenerative medicine,” Science, vol. 310, no. 5756, pp. 1919–1923, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Aarabi, M. T. Longaker, and G. C. Gurtner, “Hypertrophic scar formation following burns and trauma: new approaches to treatment,” PLoS Medicine, vol. 4, no. 9, pp. 1464–1470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Leask and D. J. Abraham, “TGF-β signaling and the fibrotic response,” FASEB Journal, vol. 18, no. 7, pp. 816–827, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. J. Singer, S. S. Huang, J. S. Huang et al., “A novel TGF-beta antagonist speeds reepithelialization and reduces scarring of partial thickness porcine burns,” Journal of Burn Care and Research, vol. 30, no. 2, pp. 329–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Wieser, J. L. Wrana, and J. Massague, “GS domain mutations that constitutively activate TβR-I, the downstream signaling component in the TGF-β receptor complex,” EMBO Journal, vol. 14, no. 10, pp. 2199–2208, 1995. View at Google Scholar · View at Scopus
  20. X. Wang, Y. Qian, R. Jin et al., “Effects of TRAP-1-like protein (TLP) gene on collagen synthesis induced by TGF-β/Smad signaling in human dermal fibroblasts,” PLoS ONE, vol. 8, no. 2, Article ID e55899, 2013. View at Publisher · View at Google Scholar
  21. T. L. Adair-Kirk and R. M. Senior, “Fragments of extracellular matrix as mediators of inflammation,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 6-7, pp. 1101–1110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. E. Kadler, C. Baldock, J. Bella, and R. P. Boot-Handford, “Collagens at a glance,” Journal of Cell Science, vol. 120, no. 12, pp. 1955–1958, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. G. C. Blobe, W. P. Schiemann, and H. F. Lodish, “Role of transforming growth factor β in human disease,” The New England Journal of Medicine, vol. 342, no. 18, pp. 1350–1358, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. G. J. Prud'homme, “Pathobiology of transforming growth factor β in cancer, fibrosis and immunologic disease, and therapeutic considerations,” Laboratory Investigation, vol. 87, no. 11, pp. 1077–1091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M.-J. Goumans, Z. Liu, and P. Ten Dijke, “TGF-β signaling in vascular biology and dysfunction,” Cell Research, vol. 19, no. 1, pp. 116–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Gelse, E. Pöschl, and T. Aigner, “Collagens—structure, function, and biosynthesis,” Advanced Drug Delivery Reviews, vol. 55, no. 12, pp. 1531–1546, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Review article wound repair and regeneration,” Nature, vol. 453, no. 7193, pp. 314–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Asanuma, R. Magid, C. Johnson, R. M. Nerem, and Z. S. Galis, “Uniaxial strain upregulates matrix-degrading enzymes produced by human vascular smooth muscle cells,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 284, no. 5, pp. H1778–H1784, 2003. View at Google Scholar · View at Scopus
  29. I. Tchetverikov, N. Verzijl, T. W. J. Huizinga, J. M. TeKoppele, R. Hanemaaijer, and J. DeGroot, “Active MMPs captured by alpha2Macroglobulin as a marker of disease activity in rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 21, no. 6, pp. 711–718, 2003. View at Google Scholar · View at Scopus
  30. R. Visse and H. Nagase, “Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry,” Circulation Research, vol. 92, no. 8, pp. 827–839, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Lin, S. Zhong, D. Liu, Y. Mao, and P. Ning, “Effect of tetrandrine on the TGF-β-induced smad signal transduction pathway in human hypertrophic scar fibroblasts in vitro,” Burns, vol. 38, no. 3, pp. 404–413, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. G. V. Oliveira, H. K. Hawkins, D. Chinkes et al., “Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type i and III collagens,” International Wound Journal, vol. 6, no. 6, pp. 445–452, 2009. View at Publisher · View at Google Scholar · View at Scopus