Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 390630, 6 pages
http://dx.doi.org/10.1155/2013/390630
Review Article

A Review of Haptoglobin Typing Methods for Disease Association Study and Preventing Anaphylactic Transfusion Reaction

1Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
2Department of Laboratory Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea

Received 27 November 2012; Accepted 5 February 2013

Academic Editor: Mina Hur

Copyright © 2013 Dae-Hyun Ko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Carter and M. Worwood, “Haptoglobin: a review of the major allele frequencies worldwide and their association with diseases,” International Journal of Laboratory Hematology, vol. 29, no. 2, pp. 92–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Kristiansen, J. H. Graversen, C. Jacobsen et al., “Identification of the haemoglobin scavenger receptor,” Nature, vol. 409, no. 6817, pp. 198–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Van Vlierberghe, M. Langlois, and J. Delanghe, “Haptoglobin polymorphisms and iron homeostasis in health and in disease,” Clinica Chimica Acta, vol. 345, no. 1-2, pp. 35–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Simpson, J. K. Snell-Bergeon, G. L. Kinney et al., “Haptoglobin genotype predicts development of coronary artery calcification in a prospective cohort of patients with type 1 diabetes,” Cardiovascular Diabetology, vol. 10, p. 99, 2011. View at Google Scholar
  5. K. Morishita, E. Shimada, Y. Watanabe, and H. Kimura, “Anaphylactic transfusion reactions associated with anti-haptoglobin in a patient with ahaptoglobinemia,” Transfusion, vol. 40, no. 1, pp. 120–121, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Shimada, K. Tadokoro, Y. Watanabe et al., “Anaphylactic transfusion reactions in haptoglobin-deficient patients with IgE and IgG haptoglobin antibodies,” Transfusion, vol. 42, no. 6, pp. 766–773, 2002. View at Google Scholar · View at Scopus
  7. N. Shimode, H. Yasuoka, M. Kinoshita et al., “Severe anaphylaxis after albumin infusion in a patient with ahaptoglobinemia,” Anesthesiology, vol. 105, no. 2, pp. 425–426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Kim, J. Choi, K. U. Park et al., “Anaphylactic transfusion reaction in a patient with anhaptoglobinemia: the first case in Korea,” Annals of Laboratory Medicine, vol. 32, no. 4, pp. 304–306, 2012. View at Google Scholar
  9. T. Muta, M. Ozaki, T. Tokuyama et al., “Anti-haptoglobin antibody detection after febrile non-hemolytic transfusion reactions in a non-haptoglobin-deficient patient,” Transfusion and Apheresis Science, vol. 41, no. 3, pp. 171–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Rougemont, M. Quilici, J. Delmont, and J. P. Ardissone, “Is the HpO phenomenon in tropical populations really genetic?” Human Heredity, vol. 30, no. 4, pp. 201–203, 1980. View at Google Scholar · View at Scopus
  11. J. Delanghe, M. Langlois, and M. De Buyzere, “Congenital anhaptoglobinemia versus acquired hypohaptoglobinemia,” Blood, vol. 91, no. 9, p. 3524, 1998. View at Google Scholar · View at Scopus
  12. K. Suzuki, K. Yagi, R. Oka et al., “Relationships of serum haptoglobin concentration with HbA1c and glycated albumin concentrations in Japanese type 2 diabetic patients,” Clinical Chemistry and Laboratory Medicine, vol. 47, no. 1, pp. 70–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Koda, Y. Watanabe, M. Soejima et al., “Simple PCR detection of haptoglobin gene deletion in anhaptoglobinemic patients with antihaptoglobin antibody that causes anaphylactic transfusion reactions,” Blood, vol. 95, no. 4, pp. 1138–1143, 2000. View at Google Scholar · View at Scopus
  14. W. Koch, W. Latz, M. Eichinger et al., “Genotyping of the common haptoglobin Hp 1/2 polymorphism based on PCR,” Clinical Chemistry, vol. 48, no. 9, pp. 1377–1382, 2002. View at Google Scholar · View at Scopus
  15. K. Carter, D. J. Bowen, C. A. M, and M. Worwood, “Haptoglobin type neither influences iron accumulation in normal subjects nor predicts clinical presentation in HFE C282Y haemochromatosis: phenotype and genotype analysis,” British Journal of Haematology, vol. 122, no. 2, pp. 326–332, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Maeda, F. Yang, D. R. Barnett, B. H. Bowman, and O. Smithies, “Duplication within the haptoglobin Hp2 gene,” Nature, vol. 309, no. 5964, pp. 131–135, 1984. View at Google Scholar · View at Scopus
  17. M. R. Langlois and J. R. Delanghe, “Biological and clinical significance of haptoglobin polymorphism in humans,” Clinical Chemistry, vol. 42, no. 10, pp. 1589–1600, 1996. View at Google Scholar · View at Scopus
  18. K. U. Park, J. Song, and J. Q. Kim, “Haptoglobin genotypic distribution (including Hp0 allele) and associated serum haptoglobin concentrations in Koreans,” Journal of Clinical Pathology, vol. 57, no. 10, pp. 1094–1095, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Kasvosve, Z. A. R. Gomo, I. T. Gangaidzo et al., “Reference range of serum haptoglobin is haptoglobin phenotype-dependent in blacks,” Clinica Chimica Acta, vol. 296, no. 1-2, pp. 163–170, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Koda, M. Soejima, N. Yoshioka, and H. Kimura, “The haptoglobin-gene deletion responsible for anhaptoglobinemia,” American Journal of Human Genetics, vol. 62, no. 2, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Soejima, Y. Koda, J. Fujihara, and H. Takeshita, “The distribution of haptoglobin-gene deletion (Hpdel) is restricted to East Asians,” Transfusion, vol. 47, no. 10, pp. 1948–1950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Teye, I. K. E. Quaye, Y. Koda et al., “A-61C and C-101G Hp gene promoter polymorphisms are, respectively, associated with ahaptoglobinaemia and hypohaptoglobinaemia in Ghana,” Clinical Genetics, vol. 64, no. 5, pp. 439–443, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. E. Cox, C. Doherty, S. H. Atkinson et al., “Haplotype association between haptoglobin (Hp2) and Hp promoter SNP (A-61C) may explain previous controversy of haptoglobin and malaria protection,” PLoS ONE, vol. 2, no. 4, article e362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Shimada, M. Odagiri, K. Chaiwong et al., “Detection of Hpdel among Thais, a deleted allele of the haptoglobin gene that causes congenital haptoglobin deficiency,” Transfusion, vol. 47, no. 12, pp. 2315–2321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Maeda, “DNA polymorphisms in the controlling region of the human haptoglobin genes: a molecular explanation for the haptoglobin 2-1 modified phenotype,” American Journal of Human Genetics, vol. 49, no. 1, pp. 158–166, 1991. View at Google Scholar · View at Scopus
  26. S. Oliviero, M. DeMarchi, and A. O. Carbonara, “Molecular evidence of triplication in the haptoglobin Johnson variant gene,” Human Genetics, vol. 71, no. 1, pp. 49–52, 1985. View at Google Scholar · View at Scopus
  27. N. Maeda, “Nucleotide sequence of the haptoglobin and haptoglobin-related gene pair,” Journal of Biological Chemistry, vol. 260, no. 11, pp. 6698–6709, 1985. View at Google Scholar · View at Scopus
  28. O. Smithies, “Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults.,” The Biochemical Journal, vol. 61, no. 4, pp. 629–641, 1955. View at Google Scholar · View at Scopus
  29. A. Alonso, G. Visedo, M. Sancho, and J. Fernandez-Piqueras, “Haptoglobin subtyping by isoelectric focusing in miniaturized polyacrylamide gels rehydrated in presence of 2-mercaptoethanol,” Electrophoresis, vol. 11, no. 4, pp. 321–324, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Delanghe, K. Allcock, M. Langlois, L. Claeys, and M. De Buyzere, “Fast determination of haptoglobin phenotype and calculation of hemoglobin binding capacity using high pressure gel permeation chromatography,” Clinica Chimica Acta, vol. 291, no. 1, pp. 43–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. N. S. Levy and A. P. Levy, “ELISA for determination of the haptoglobin phenotype,” Clinical Chemistry, vol. 50, no. 11, pp. 2148–2150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Soejima and Y. Koda, “TaqMan-based real-time PCR for genotyping common polymorphisms of haptoglobin (HP1 and HP2),” Clinical Chemistry, vol. 54, no. 11, pp. 1908–1913, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Soejima and Y. Koda, “Rapid real-time PCR detection of HPdel directly from diluted blood samples,” Clinical Chemistry, vol. 54, no. 6, pp. 1095–1096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Soejima, Y. Tsuchiya, K. Egashira, H. Kawano, K. Sagawa, and Y. Koda, “Development and validation of a SYBR Green I-based real-time polymerase chain reaction method for detection of haptoglobin gene deletion in clinical materials,” Transfusion, vol. 50, no. 6, pp. 1322–1327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Soejima, K. Egashira, H. Kawano, A. Kawaguchi, K. Sagawa, and Y. Koda, “Rapid detection of haptoglobin gene deletion in alkaline-denatured blood by loop-mediated isothermal amplification reaction,” Journal of Molecular Diagnostics, vol. 13, no. 3, pp. 334–339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Nakamura, M. Soejima, L. Munkhtulga, S. Iwamoto, and Y. Koda, “Haptoglobin polymorphism in Mongolian population: comparison of the two genotyping methods,” Clinica Chimica Acta, vol. 408, no. 1-2, pp. 110–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Notomi, H. Okayama, H. Masubuchi et al., “Loop-mediated isothermal amplification of DNA,” Nucleic Acids Research, vol. 28, no. 12, p. E63, 2000. View at Google Scholar · View at Scopus
  38. Y. Mori and T. Notomi, “Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases,” Journal of Infection and Chemotherapy, vol. 15, no. 2, pp. 62–69, 2009. View at Publisher · View at Google Scholar · View at Scopus