Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 406871, 11 pages
http://dx.doi.org/10.1155/2013/406871
Research Article

Promotion of Hepatic Differentiation of Bone Marrow Mesenchymal Stem Cells on Decellularized Cell-Deposited Extracellular Matrix

1Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
2Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
3Department of Biomedical Engineering, School of Engineering, Sun Yat-Sen University, No. 132, East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
4Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, No. 132, East Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
5Orthopaedic Institute, Soochow University, 708 Renmin Road, Suzhou 215007, China
6Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China

Received 9 June 2013; Accepted 16 July 2013

Academic Editor: Ken-ichi Isobe

Copyright © 2013 Hongliang He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Interactions between stem cells and extracellular matrix (ECM) are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimicked in vivo liver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS), bone marrow mesenchymal stem cells (BM-MSCs) cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.