Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 412745, 6 pages
Research Article

The Study on Biocompatibility of Porous nHA/PLGA Composite Scaffolds for Tissue Engineering with Rabbit Chondrocytes In Vitro

1Guangzhou Medical College, Guangzhou, Guangdong 510182, China
2Department of Orthopedics, Second People’s Hospital of Shenzhen, Sungang West Road, Futian District, Shenzhen, Guangdong 518035, China
3Shenzhen Key Laboratory of Tissue Engineering, Shenzhen, Guangdong 518035, China
4Biomechanics and Medical Information Institute, Beijing University of Technology, Beijing 100022, China

Received 6 July 2013; Revised 4 September 2013; Accepted 4 September 2013

Academic Editor: Aaron W. James

Copyright © 2013 Lei Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W.-Y. Xia, W. Liu, L. Cui et al., “The experimental study of tissue engineered autologous cartilage using chitosan-gelatin complex scaffolds,” Chinese Medical Journal, vol. 83, no. 7, pp. 577–579, 2003. View at Google Scholar · View at Scopus
  2. C. Lei, F. Zhi-qiang, L. Zhi-yong et al., “The Research progress of nHA/PLGA composite artificial bone materials,” Journal of Hubei Medical University, vol. 31, no. 4, pp. 347–350, 2012. View at Google Scholar
  3. C. Wang, G. Meng, L. Zhang, Z. Xiong, and J. Liu, “Physical properties and biocompatibility of a core-sheath structure composite scaffold for bone tissue engineering in vitro,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 579141, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. N. D. Hsieh-Bonassera, I. Wu, J. K. Lin et al., “Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering,” Tissue Engineering A, vol. 15, no. 11, pp. 3513–3523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Masukawa, Y. Miura, I. Sato, Y. Oiso, and A. Suzuki, “Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation,” Journal of Cellular Biochemistry, vol. 83, no. 1, pp. 121–128, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Rodrigues, S. Pap, C. A. Vacanti et al., “The effect of long-term culture on the ability of human auricular chondrocytes to generate tissue engineered cartilage,” in Biological Matrices and Tissue Reconstruction, G. B. Stard, R. Horch, and E. Tanczos, Eds., pp. 163–1168, Springer, New York, NY, USA, 1998. View at Google Scholar
  7. L. Wu, Z. Xiao-rong, G. Li et al., “Isolation, culture and identification of New Zealand rabbit articular cartilage cells,” International Journal of Laboratory Medicine, vol. 33, no. 19, pp. 2307–2312, 2012. View at Google Scholar
  8. M. Vallet-Regí, I. Izquierdo-Barba, and M. Colilla, “Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery,” Philosophical Transactions of the Royal Society A, vol. 370, no. 1963, pp. 1400–1421, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. N. M. Hu, Z. Chen, X. Liu et al., “Mechanical properties and in vitro bioactivity of injectable and self-setting calcium sulfate/nano-HA/collagen bone graft substitute,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 12, pp. 119–1128, 2012. View at Publisher · View at Google Scholar
  10. C. Qi, W. Da-ping, L. Jian-quan et al., “Preparation and biocompatibility study of nano-hydroxyapatite/polyaiticglycolic acid composite material,” International Journal of Orthopaedics, vol. 31, no. 6, pp. 349–351, 2010. View at Google Scholar
  11. M. Mueller, W. Reichardt, J. Koerner et al., “Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice,” Control Release, vol. 162, no. 1, pp. 159–166, 2012. View at Google Scholar
  12. A. Mittal, R. Kumar, D. Parsad et al., “Cytomodulin-functionalized porous PLGA particulate scaffolds respond better to cell migration, actin production and wound healing in rodent model,” Tissue Engineering and Regenerative Medicine, 2012. View at Publisher · View at Google Scholar
  13. S. Piao, I. G. Kim, J. Y. Lee et al., “Therapeutic effect of adipose-derived stem cells and BDNF-immobilized PLGA membrane in a rat model of cavernous nerve injury,” The Journal of Sexual Medicine, vol. 9, no. 8, pp. 1968–1979, 2012. View at Publisher · View at Google Scholar
  14. O. Im, J. Li, M. Wang et al., “Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration,” International Journal of Nanomedicine, vol. 7, pp. 2087–2099, 2012. View at Google Scholar
  15. K. M. Woo, V. J. Chen, and P. X. Ma, “Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment,” Journal of Biomedical Materials Research A, vol. 67, no. 2, pp. 531–537, 2003. View at Google Scholar · View at Scopus
  16. V. J. Chen and P. X. Ma, “The effect of surface area on the degradation rate of nano-fibrous poly(l-lactic acid) foams,” Biomaterials, vol. 27, no. 20, pp. 3708–3715, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Song-wei, Z. Jie-ruo, H. Zhen-gang et al., “Repairing osteochondral defect of rabbits with Nano-HA/CS scaffold composite with chondrocyte by boot-shaped structure,” Journal of Sun Yat-Sen University, vol. 33, no. 3, pp. 282–286, 2012. View at Google Scholar
  18. R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey, “Effects of synthetic micro- and nano-structured surfaces on cell behavior,” Biomaterials, vol. 20, no. 6, pp. 573–588, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Zhu, J. Xiao, D. Wang et al., “Experimental study of nano-HA artificial bone with different pore sizes for repairing the radial defect,” International Orthopaedics, vol. 33, no. 2, pp. 567–571, 2009. View at Publisher · View at Google Scholar · View at Scopus