Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 414327, 8 pages
http://dx.doi.org/10.1155/2013/414327
Research Article

A Novel Method of Predicting Protein Disordered Regions Based on Sequence Features

1Institute of Systems Biology, Shanghai University, Shanghai 200444, China
2Department of Mathematics, College of Science, Shanghai University, Shanghai 200444, China
3State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiaotong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
4Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
5Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
6Department of Biomedical Engineering, Tianjin University, Tianjin Key Lab of BME Measurement, Tianjin 300072, China
7CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Received 3 March 2013; Accepted 26 March 2013

Academic Editor: Bin Niu

Copyright © 2013 Tong-Hui Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Linding, L. J. Jensen, F. Diella, P. Bork, T. J. Gibson, and R. B. Russell, “Protein disorder prediction: implications for structural proteomics,” Structure, vol. 11, no. 11, pp. 1453–1459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Dunker, J. D. Lawson, C. J. Brown et al., “Intrinsically disordered protein,” Journal of Molecular Graphics and Modelling, vol. 19, no. 1, pp. 26–59, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Nishikawa, “Natively unfolded proteins: an overview,” Biophysics, vol. 5, pp. 53–58, 2009. View at Publisher · View at Google Scholar
  4. P. E. Wright and H. J. Dyson, “Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm,” Journal of Molecular Biology, vol. 293, no. 2, pp. 321–331, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. H. J. Dyson and P. E. Wright, “Intrinsically unstructured proteins and their functions,” Nature Reviews Molecular Cell Biology, vol. 6, no. 3, pp. 197–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. V. N. Uversky, “Natively unfolded proteins: a point where biology waits for physics,” Protein Science, vol. 11, no. 4, pp. 739–756, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. Dunker, C. J. Brown, J. D. Lawson, L. M. Iakoucheva, and Z. Obradović, “Intrinsic disorder and protein function,” Biochemistry, vol. 41, no. 21, pp. 6573–6582, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Sickmeier, J. A. Hamilton, T. LeGall et al., “DisProt: the database of disordered proteins,” Nucleic Acids Research, vol. 35, supplement 1, pp. D786–D793, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Eliezer, “Biophysical characterization of intrinsically disordered proteins,” Current Opinion in Structural Biology, vol. 19, no. 1, pp. 23–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. E. A. Weathers, M. E. Paulaitis, T. B. Woolf, and J. H. Hoh, “Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein,” FEBS Letters, vol. 576, no. 3, pp. 348–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. J. Ward, L. J. McGuffin, K. Bryson, B. F. Buxton, and D. T. Jones, “The DISOPRED server for the prediction of protein disorder,” Bioinformatics, vol. 20, no. 13, pp. 2138–2139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. J. Mcguffin, “Intrinsic disorder prediction from the analysis of multiple protein fold recognition models,” Bioinformatics, vol. 24, no. 16, pp. 1798–1804, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Wang and U. H. Sauer, “OnD-CRF: predicting order and disorder in proteins conditional random fields,” Bioinformatics, vol. 24, no. 11, pp. 1401–1402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Hobohm and C. Sander, “Enlarged representative set of protein structures,” Protein Science, vol. 3, no. 3, pp. 522–524, 1994. View at Google Scholar · View at Scopus
  16. T. Huang, Z. S. He, W. R. Cui et al., “A sequence-based approach for predicting protein disordered regions,” Protein and Peptide Letters, vol. 20, no. 3, pp. 243–248, 2013. View at Google Scholar
  17. S. Ahmad and A. Sarai, “PSSM-based prediction of DNA binding sites in proteins,” BMC Bioinformatics, vol. 6, no. 1, article 33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Radhakrishnan, G. C. Pérez-Alvarado, H. J. Dyson, and P. E. Wright, “Conformational preferences in the Ser133-phosphorylated and non-phosphorylated forms of the kinase inducible transactivation domain of CREB,” FEBS Letters, vol. 430, no. 3, pp. 317–322, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. M. K. Yoon, V. Venkatachalam, A. Huang, B. S. Choi, C. M. Stultz, and J. J. Chou, “Residual structure within the disordered C-terminal segment of p21 Waf1/Cip1/Sdi1 and its implications for molecular recognition,” Protein Science, vol. 18, no. 2, pp. 337–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Fuxreiter, I. Simon, P. Friedrich, and P. Tompa, “Preformed structural elements feature in partner recognition by intrinsically unstructured proteins,” Journal of Molecular Biology, vol. 338, no. 5, pp. 1015–1026, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, “Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles,” Proteins: Structure, Function and Genetics, vol. 47, no. 2, pp. 228–235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Svetnik, A. Liaw, C. Tong, J. Christopher Culberson, R. P. Sheridan, and B. P. Feuston, “Random forest: a classification and regression tool for compound classification and QSAR modeling,” Journal of Chemical Information and Computer Sciences, vol. 43, no. 6, pp. 1947–1958, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Dehzangi, S. Phon-Amnuaisuk, and O. Dehzangi, “Using random forest for protein fold prediction problem: an empirical study,” Journal of Information Science and Engineering, vol. 26, no. 6, pp. 1941–1956, 2010. View at Google Scholar · View at Scopus
  25. K. K. Kandaswamy, K. C. Chou, T. Martinetz et al., “AFP-Pred: a random forest approach for predicting antifreeze proteins from sequence-derived properties,” Journal of Theoretical Biology, vol. 270, no. 1, pp. 56–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. P. Liu, L. Y. Wu, Y. Wang, X. S. Zhang, and L. Chen, “Prediction of protein-RNA binding sites by a random forest method with combined features,” Bioinformatics, vol. 26, no. 13, pp. 1616–1622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. C. Chou and C. T. Zhang, “Prediction of protein structural classes,” Critical Reviews in Biochemistry and Molecular Biology, vol. 30, no. 4, pp. 275–349, 1995. View at Google Scholar · View at Scopus
  28. K. C. Chou and H. B. Shen, “Recent progress in protein subcellular location prediction,” Analytical Biochemistry, vol. 370, no. 1, pp. 1–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. K. C. Chou and H. B. Shen, “Cell-PLoc: a package of web servers for predicting subcellular localization of proteins in various organisms,” Nature Protocols, vol. 3, no. 2, pp. 153–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. K. C. Chou, “Some remarks on protein attribute prediction and pseudo amino acid composition,” Journal of Theoretical Biology, vol. 273, no. 1, pp. 236–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. He, J. Zhang, X. H. Shi et al., “Predicting drug-target interaction networks based on functional groups and biological features,” PLoS ONE, vol. 5, no. 3, Article ID e9603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Q. Li, L. L. Hu, S. Niu, Y. D. Cai, and K. C. Chou, “Predict and analyze S-nitrosylation modification sites with the mRMR and IFS approaches,” Journal of Proteomics, vol. 75, no. 5, pp. 1654–1665, 2011. View at Publisher · View at Google Scholar
  33. T. Huang, L. Chen, Y. D. Cai, and K. C. Chou, “Classification and analysis of regulatory pathways using graph property, biochemical and physicochemical property, and functional property,” PloS ONE, vol. 6, no. 9, Article ID e25297, 2011. View at Publisher · View at Google Scholar
  34. H. Cramér, Methods of Mathematical Statistics, vol. 23, Princeton University Press, Princeton, NJ, USA, 1946.
  35. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics. Volume 2: Inference and: Relationship, Griffin Printing, Santa Ana, Calif, USA, 1973.
  36. K. M. D. Harrison, T. Kajese, H. I. Hall, and R. Song, “Risk factor redistribution of the national HIV/AIDS surveillance data: an alternative approach,” Public Health Reports, vol. 123, no. 5, pp. 618–627, 2008. View at Google Scholar · View at Scopus
  37. S. Roy, D. Martinez, H. Platero, T. Lane, and M. Werner-Washburne, “Exploiting amino acid composition for predicting protein-protein interactions,” PLoS ONE, vol. 4, no. 11, Article ID e7813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Ngo, V. Chiang, E. Ho, L. Le, and Z. Guo, “Prion domain of yeast Ure2 protein adopts a completely disordered structure: a solid-support EPR study,” PloS ONE, vol. 7, no. 10, Article ID e47248, 2012. View at Publisher · View at Google Scholar
  39. F. Peysselon, B. Xue, V. N. Uversky, and S. Ricard-Blum, “Intrinsic disorder of the extracellular matrix,” Molecular BioSystems, vol. 7, no. 12, pp. 3353–3365, 2011. View at Publisher · View at Google Scholar
  40. J. S. Evans, “Aragonite-associated biomineralization proteins are disordered and contain interactive motifs,” Bioinformatics, vol. 28, no. 24, pp. 3182–3185, 2012. View at Publisher · View at Google Scholar
  41. H. S. Tae, Y. Cui, Y. Karunasekara, P. G. Board, A. F. Dulhunty, and M. G. Casarotto, “Cyclization of the intrinsically disordered α1S dihydropyridine receptor II-III loop enhances secondary structure and in vitro function,” The Journal of Biological Chemistry, vol. 286, no. 25, pp. 22589–22599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Q. Li, L. L. Hu, L. Chen, K. Y. Feng, Y. D. Cai, and K. C. Chou, “Prediction of protein domain with mRMR feature selection and analysis,” PloS One, vol. 7, no. 6, Article ID e39308, 2012. View at Publisher · View at Google Scholar
  43. B. Meszaros, I. Simon, and Z. Dosztanyi, “Prediction of protein binding regions in disordered proteins,” PLoS Computational Biology, vol. 5, no. 5, Article ID e1000376, 2009. View at Google Scholar
  44. M. Marin, V. Thallmair, and T. Ott, “The intrinsically disordered N-terminal region of AtREM1. 3 remorin protein mediates protein-protein interactions,” The Journal of Biological Chemistry, vol. 287, no. 47, pp. 39982–39991, 2012. View at Publisher · View at Google Scholar
  45. N. Nagarajan and G. Yona, “Automatic prediction of protein domains from sequence information using a hybrid learning system,” Bioinformatics, vol. 20, no. 9, pp. 1335–1360, 2004. View at Publisher · View at Google Scholar · View at Scopus