Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 479893, 9 pages
Research Article

Genetic and Biochemical Diversity of Paenibacillus larvae Isolated from Tunisian Infected Honey Bee Broods

1Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
2LR Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole Sidi Thabet, University of Manouba, 2020 Ariana, Tunisia
3Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
4Laboratoire de Zoologie et Apicultures, Institut National Agronomique de Tunis, 43 avenue Charles Nicolle, 1082 Tunis-Mahrajène, Tunisia
5Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Turin, I-10095 Grugliasco, Italy

Received 30 April 2013; Accepted 27 July 2013

Academic Editor: George Tsiamis

Copyright © 2013 Chadlia Hamdi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Paenibacillus larvae is the causative agent of American foulbrood (AFB), a virulent disease of honeybee (Apis mellifera) larvae. In Tunisia, AFB has been detected in many beekeeping areas, where it causes important economic losses, but nothing is known about the diversity of the causing agent. Seventy-five isolates of P. larvae, identified by biochemical tests and 16S rRNA gene sequencing, were obtained from fifteen contaminated broods showing typical AFB symptoms, collected in different locations in the northern part of the country. Using BOX-PCR, a distinct profile of P. larvae with respect to related Paenibacillus species was detected which may be useful for its identification. Some P. larvae-specific bands represented novel potential molecular markers for the species. BOX-PCR fingerprints indicated a relatively high intraspecific diversity among the isolates not described previously with several molecular polymorphisms identifying six genotypes on polyacrylamide gel. Polymorphisms were also detected in several biochemical characters (indol production, nitrate reduction, and methyl red and oxidase tests). Contrary to the relatively high intraspecies molecular and phenotypic diversity, the in vivo virulence of three selected P. larvae genotypes did not differ significantly, suggesting that the genotypic/phenotypic differences are neutral or related to ecological aspects other than virulence.