Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 564534, 11 pages
Review Article

Neuroprotective Function of 14-3-3 Proteins in Neurodegeneration

1Neural Plasticity Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
2Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4

Received 26 August 2013; Accepted 17 October 2013

Academic Editor: Anna Maria Lavezzi

Copyright © 2013 Tadayuki Shimada et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


14-3-3 proteins are abundantly expressed adaptor proteins that interact with a vast number of binding partners to regulate their cellular localization and function. They regulate substrate function in a number of ways including protection from dephosphorylation, regulation of enzyme activity, formation of ternary complexes and sequestration. The diversity of 14-3-3 interacting partners thus enables 14-3-3 proteins to impact a wide variety of cellular and physiological processes. 14-3-3 proteins are broadly expressed in the brain, and clinical and experimental studies have implicated 14-3-3 proteins in neurodegenerative disease. A recurring theme is that 14-3-3 proteins play important roles in pathogenesis through regulating the subcellular localization of target proteins. Here, we review the evidence that 14-3-3 proteins regulate aspects of neurodegenerative disease with a focus on their protective roles against neurodegeneration.