Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 590359, 6 pages
http://dx.doi.org/10.1155/2013/590359
Research Article

Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

Department of Biotechnology, Punjabi University, Patiala 147002, India

Received 22 April 2013; Revised 22 July 2013; Accepted 28 July 2013

Academic Editor: Argyro Bekatorou

Copyright © 2013 Baljinder Kaur et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. B. Faulds, B. Bartolomé, and G. Williamson, “Novel biotransformations of agro-industrial cereal waste by ferulic acid esterases,” Industrial Crops and Products, vol. 6, no. 3-4, pp. 367–374, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Kaur, D. Chakraborty, G. Kaur, and G. Kaur, “Biotransformation of rice bran to ferulic acid by Pediococcal isolates,” Applied Biochemistry and Biotechnology, vol. 170, no. 4, pp. 854–867, 2013. View at Publisher · View at Google Scholar
  3. J. Overhage, A. Steinbüchel, and H. Priefert, “Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16,” Applied and Environmental Microbiology, vol. 68, no. 9, pp. 4315–4321, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Van Beek and F. G. Priest, “Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation,” Applied and Environmental Microbiology, vol. 66, no. 12, pp. 5322–5328, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Barghini, D. Di Gioia, F. Fava, and M. Ruzzi, “Vanillin production using metabolically engineered Escherichia coli under non-growing conditions,” Microbial Cell Factories, vol. 6, article 13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Kaur and D. Chakraborty, “Biotechnological and molecular approaches for vanillin production: a review,” Applied Biochemistry and Biotechnology, vol. 169, no. 8, pp. 1353–1372, 2012. View at Google Scholar
  7. D. Szwajgier and A. Jakubczyk, “Production of extracellular ferulic acid esterases by Lactobacillus strains using natural and synthetic carbon sources,” Acta Scientiarum Polonorum, vol. 10, no. 3, pp. 287–302, 2011. View at Google Scholar · View at Scopus
  8. A. Bloem, A. Bertrand, A. Lonvaud-Funel, and G. De Revel, “Vanillin production from simple phenols by wine-associated lactic acid bacteria,” Letters in Applied Microbiology, vol. 44, no. 1, pp. 62–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. A. Adamu, S. Iqbal, K. W. Chan, and M. Ismail, “Biotransformation of ferulic acid to 4-vinyl guaiacol by Lactobacillus farciminis,” African Journal of Biotechnology, vol. 11, no. 5, pp. 1177–1184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. R. D. Hatfield, J. Ralph, and J. H. Grabber, “Cell wall cross-linking by ferulates and diferulates in grasses,” Journal of the Science of Food and Agriculture, vol. 79, no. 3, pp. 403–407, 1999. View at Google Scholar · View at Scopus
  11. A. Converti, B. Aliakbarian, J. M. Domínguez, G. B. Vázquez, and P. Perego, “Microbial production of biovanillin,” Brazilian Journal of Microbiology, vol. 41, no. 3, pp. 519–530, 2010. View at Google Scholar · View at Scopus
  12. B. Kaur and D. Chakraborty, “Statistical media and process optimization for biotransformation of rice bran to vanillin using Pediococcus acidilactici,” Indian Journal of Experimental Biology. In press.
  13. J. M. Landete, H. Rodríguez, J. A. Curiel, B. De Las Rivas, J. M. Mancheño, and R. Muñoz, “Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84,” Journal of Industrial Microbiology and Biotechnology, vol. 37, no. 6, pp. 617–624, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Narbad and M. J. Gasson, “Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens,” Microbiology, vol. 144, no. 5, pp. 1397–1405, 1998. View at Google Scholar · View at Scopus
  15. Y.-T. Chen and K.-W. Lin, “Effects of heating temperature on the total phenolic compound, antioxidative ability and the stability of dioscorin of various yam cultivars,” Food Chemistry, vol. 101, no. 3, pp. 955–963, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Mukherjee, R. K. Singh, A. Mitra, and S. K. Sen, “Ferulic acid esterase production by Streptomyces sp,” Bioresource Technology, vol. 98, no. 1, pp. 211–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Ferreira, N. Diez, C. Gutiérrez, J. Soliveri, and J. L. Copa-Patiño, “Streptomyces avermitilis CECT 3339 produces a ferulic acid esterase able to release ferulic acid from sugar beet pulp soluble feruloylated oligosaccharides,” Journal of the Science of Food and Agriculture, vol. 79, no. 3, pp. 440–442, 1999. View at Google Scholar · View at Scopus
  18. C. B. Faulds, R. P. Devries, P. A. Kroon, J. Visser, and G. Williamson, “Influence of ferulic acid on the production of feruloyl esterases by Aspergillus niger,” FEMS Microbiology Letters, vol. 157, no. 2, pp. 239–244, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. K. G. Johnson, B. A. Harrison, H. Schneider, C. R. MacKenzie, and J. D. Fontana, “Xylan-hydrolysing enzymes from Streptomyces spp,” Enzyme and Microbial Technology, vol. 10, no. 7, pp. 403–409, 1988. View at Google Scholar · View at Scopus
  20. L. Barthelmebs, C. Divies, and J.-F. Cavin, “Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism,” Applied and Environmental Microbiology, vol. 66, no. 8, pp. 3368–3375, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Karmakar, R. M. Vohra, H. Nandanwar, P. Sharma, K. G. Gupta, and R. C. Sobti, “Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans,” Journal of Biotechnology, vol. 80, no. 3, pp. 195–202, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Barghini, D. Di Gioia, F. Fava, and M. Ruzzi, “Vanillin production using metabolically engineered Escherichia coli under non-growing conditions,” Microbial Cell Factories, vol. 6, article 13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Bonnin, H. Grangé, L. Lesage-Meessen, M. Asther, and J.-F. Thibault, “Enzymic release of cellobiose from sugar beet pulp, and its use to favour vanillin production in Pycnoporus cinnabarinus from vanillic acid,” Carbohydrate Polymers, vol. 41, no. 2, pp. 143–151, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Topakas, C. Vafiadi, H. Stamatis, and P. Christakopoulos, “Sporotrichum thermophile type C feruloyl esterase (StFaeC): purification, characterization, and its use for phenolic acid (sugar) ester synthesis,” Enzyme and Microbial Technology, vol. 36, no. 5-6, pp. 729–736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Bartolomé, C. Gómez-Cordovés, A. I. Sancho et al., “Growth and release of hydroxycinnamic acids from Brewer's spent grain by Streptomyces avermitilis CECT 3339,” Enzyme and Microbial Technology, vol. 32, no. 1, pp. 140–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. C. B. Faulds and G. Williamson, “Release of ferulic acid from plant polysaccharides by ferulic acid esterase from Streptomyces olivochromogenes,” Carbohydrate Polymers, vol. 21, no. 2-3, pp. 153–155, 1993. View at Google Scholar · View at Scopus
  27. B. L. Garcia, A. S. Ball, J. Rodriguez, M. I. Pérez-Leblic, M. E. Arias, and J. L. Copa-Patiño, “Induction of ferulic acid esterase and xylanase activities in Streptomyces avermitilis UAH30,” FEMS Microbiology Letters, vol. 158, no. 1, pp. 95–99, 1998. View at Publisher · View at Google Scholar · View at Scopus