Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 591931, 9 pages
Review Article

The Role of MicroRNAs in Cancer Susceptibility

1Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Graecia” di Catanzaro, 88100 Catanzaro, Italy
2Unità Operativa di Genetica Medica, Università “Magna Graecia” di Catanzaro, 88100 Catanzaro, Italy
3Dipartimento di Medicina Molecolare, Università di Roma “Sapienza”, 00161 Roma, Italy
4Dipartimento di Scienze della Salute, Università “Magna Graecia” di Catanzaro, 88100 Catanzaro, Italy
5Centro Oncologico Fondazione T. Campanella, 88100 Catanzaro, Italy

Received 19 December 2012; Accepted 14 February 2013

Academic Editor: Anna Di Gregorio

Copyright © 2013 Rodolfo Iuliano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Single nucleotide polymorphisms (SNPs) are germline variations interspersed in the human genome. These subtle changes of DNA sequence can influence the susceptibility to various pathologies including cancer. The functional meaning of SNPs is not always clear, being, the majority of them, localized in noncoding regions. The discovery of microRNAs, tiny noncoding RNAs able to bind the 3′ untranslated region (UTR) of target genes and to consequently downregulate their expression, has provided a functional explanation of how some SNPs positioned in noncoding regions contribute to cancer susceptibility. In this paper we summarize the current knowledge of the effect on cancer susceptibility of SNPs included in regions related with miRNA-dependent pathways. Hereditary cancer comes up from mutations that occur in high-penetrant predisposing tumor genes. However, a considerable part of inherited cancers arises from multiple low-penetrant predisposing gene variants that influence the behavior of cancer insurgence. Despite the established significance of such polymorphic variants in cancer predisposition, sometimes their functional role remains unknown. The discovery of a new group of genes called microRNAs (miRNAs) opened an avenue for the functional interpretation of polymorphisms involved in cancer predisposition.