Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 595369, 8 pages
http://dx.doi.org/10.1155/2013/595369
Clinical Study

The Usefulness of Impedance Cardiography for Predicting Beneficial Effects of Cardiac Rehabilitation in Patients with Heart Failure

1Department of Cardiology and Internal Diseases, Military Institute of Medicine, Szaserow Street 128, 04-141 Warsaw, Poland
2Telecardiology Center, Institute of Cardiology, Alpejska Street 42, 04-628 Warsaw, Poland
3Department of Cardiac Rehabilitation and Noninvasive Electrocardiology, Institute of Cardiology, Alpejska Street 42, 04-628 Warsaw, Poland

Received 23 April 2013; Accepted 22 July 2013

Academic Editor: Sakthivel Sadayappan

Copyright © 2013 Grzegorz Gielerak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Ventura-Clapier, B. Mettauer, and X. Bigard, “Beneficial effects of endurance training on cardiac and skeletal muscle energy metabolism in heart failure,” Cardiovascular Research, vol. 73, no. 1, pp. 10–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Belardinelli, D. Georgiou, G. Cianci, and A. Purcaro, “Exercise training for patients with chronic heart failure reduced mortality and cardiac events and improved quality of life,” The Western Journal of Medicine, vol. 172, no. 1, p. 28, 2000. View at Google Scholar
  3. R. Belardinelli, D. Georgiou, G. Cianci, and A. Purcaro, “10-year exercise training in chronic heart failure: a randomized controlled trial,” Journal of the American College of Cardiology, vol. 60, no. 16, pp. 1521–1528, 2012. View at Google Scholar
  4. C. M. Perez-Terzic, “Exercise in cardiovascular diseases,” PM & R, vol. 4, no. 11, pp. 867–873, 2012. View at Google Scholar
  5. G. Gielerak, E. Piotrowicz, P. Krzesiński, J. Kowal, M. Grzȩda, and R. Piotrowicz, “The effects of cardiac rehabilitation on haemodynamic parameters measured by impedance cardiography in patients with heart failure,” Kardiologia Polska, vol. 69, no. 4, pp. 309–317, 2011. View at Google Scholar · View at Scopus
  6. P. Krzesiński, G. Gielerak, and J. Kowal, “Impedance cardiography—a modern tool for monitoring therapy of cardiovascular diseases,” Kardiologia Polska, vol. 67, no. 1, pp. 65–71, 2009. View at Google Scholar · View at Scopus
  7. W. F. Peacock, R. L. Summers, J. Vogel, and C. E. Emerman, “Impact of impedance cardiography on diagnosis and therapy of emergent dyspnea: The ED-IMPACT Trial,” Academic Emergency Medicine, vol. 13, no. 4, pp. 365–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Packer, W. T. Abraham, M. R. Mehra et al., “Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure,” Journal of the American College of Cardiology, vol. 47, no. 11, pp. 2245–2252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Krzesinski, D. Michalkiewicz, Z. Orski, K. Krzyzanowski, and G. Gielerak, “Is haemodynamic evaluation with impedance cardiography in patients with heart failure undergoing testing of the implanted cardioverter-defibrillator of clinical importance?” Kardiologia Polska, vol. 69, no. 6, pp. 548–556, 2011. View at Google Scholar
  10. J. J. McMurray, S. Adamopoulos, S. D. Anker et al., “ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC,” European Journal of Heart Failure, vol. 14, no. 8, pp. 803–869, 2012. View at Google Scholar
  11. J. Dorn, J. Naughton, D. Imamura, and M. Trevisan, “Results of a multicenter randomized clinical trial of exercise and long- term survival in myocardial infarction patients: The National Exercise and Heart Disease Project (NEHDP),” Circulation, vol. 100, no. 17, pp. 1764–1769, 1999. View at Google Scholar · View at Scopus
  12. J.-Y. Tabet, P. Meurin, F. Beauvais et al., “Absence of exercise capacity improvement after exercise training program: a strong prognostic factor in patients with chronic heart failure,” Circulation, vol. 1, no. 4, pp. 220–226, 2008. View at Google Scholar · View at Scopus
  13. T. Kavanagh, D. J. Mertens, L. F. Hamm et al., “Prediction of long-term prognosis in 12 169 men referred for cardiac rehabilitation,” Circulation, vol. 106, no. 6, pp. 666–671, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. G. J. Balady, “Medical evaluation and exercise testing,” in Guidelines for Cardiac Rehabilitation and Secondary Prevention Programs, M. A. Williams, Ed., p. 79, American Association of Cardiovascular and Pulmonary Rehabilitation. Human Kinetics, 4th edition, 2004. View at Google Scholar
  15. K. Wasserman, J. Hansen, D. Y. Sue, W. W. Stringer, and B. J. Whipp, Principles of Exercise Testing and Interpretation, Lippincott Williams & Wilkins, 2005.
  16. Task Force of the Italian Working Group on Cardiac Rehabilitation and Prevention, Working Group on Cardiac Rehabilitation and Exercise Physiology of the European Society of Cardiology, M. F. Piepoli et al., “Statement on cardiopulmonary exercise testing in chronic heart failure due to left ventricular dysfunction: recommendations for performance and interpretation Part II: how to perform cardiopulmonary exercise testing in chronic heart failure,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 13, no. 3, pp. 300–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Borg, “Psychophysical basis of perceived exertion,” Medicine & Science in Sports & Exercise, vol. 5, no. 14, pp. 90–93, 1982. View at Google Scholar
  18. S. D. Eeell, J. S. Chambers, D. P. Francis, D. Fedwards, and R. H. Stables, “Shuttle-walk test to assess chronic heart failure,” The Lancet, vol. 352, no. 9129, p. 705, 1998. View at Google Scholar · View at Scopus
  19. I. L. Piña, C. S. Apstein, G. J. Balady et al., “Exercise and heart failure: a statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention,” Circulation, vol. 107, no. 8, pp. 1210–1225, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. Working Group on Cardiac Rehabilitation & Exercise Physiology and Working Group on Heart Failure of the European Society of Cardiology, “Recommendations for exercise training in chronic heart failure patients,” European Heart Journal, vol. 22, no. 2, pp. 125–135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Piotrowicz, P. Dylewicz, A. Jegier et al., “Comprehensive cardiac rehabilitation a statement from Polish Cardiac Society,” Folia Cardiologica, vol. 11, supplement, pp. A36–A40, 2004. View at Google Scholar
  22. V. F. Froelicher and J. Myers, “Effect of exercise on the heart and the prevention of coronary heart disease,” in Exercise and the Heart, S. F. Pioli, Ed., p. 424, Elsevier, Philadelphia, Pa, USA, 5th edition, 2006. View at Google Scholar
  23. E. Piotrowicz, R. Baranowski, M. Bilinska et al., “A new model of home-based telemonitored cardiac rehabilitation in patients with heart failure: effectiveness, quality of life, and adherence,” European Journal of Heart Failure, vol. 12, no. 2, pp. 164–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Piotrowicz, “How to do: telerehabilitation in heart failure patients,” Cardiology Journal, vol. 19, no. 3, pp. 243–248, 2012. View at Google Scholar
  25. E. Piotrowicz, A. Jasionowska, M. Banaszak-Bednarczyk, J. Gwilkowska, and R. Piotrowicz, “ECG telemonitoring during home-based cardiac rehabilitation in heart failure patients,” Journal of Telemedicine and Telecare, vol. 18, no. 4, pp. 193–197, 2012. View at Google Scholar
  26. M. Sheikhvatan, M. Nejatian, and A. Sardari, “Baseline systolic blood pressure response to exercise stress test can predict exercise indices following cardiac rehabilitation program,” Journal of Tehran University Heart Center, vol. 5, no. 4, pp. 184–187, 2010. View at Google Scholar · View at Scopus
  27. N. Smart, B. Haluska, L. Jeffriess, C. Case, and T. H. Marwick, “Cardiac contributions to exercise training responses in patients with chronic heart failure: a strain imaging study,” Echocardiography, vol. 23, no. 5, pp. 376–382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Araya-Ramírez, K. K. Briggs, S. R. Bishop, C. E. Miller, J. Moncada-Jiménez, and P. W. Grandjean, “Who is likely to benefit from phase II cardiac rehabilitation?” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 30, no. 2, pp. 93–100, 2010. View at Google Scholar
  29. L. M. Pierson, L. E. Miller, and W. G. Herbert, “Predicting exercise training outcome from cardiac rehabilitation,” Journal of Cardiopulmonary Rehabilitation, vol. 24, no. 2, pp. 113–120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. J. Rocha, V. Araújo, F. Parada, M. J. Maciel, and A. Azevedo, “Age does not determine the physical, functional and psychosocial response to a cardiac rehabilitation program,” Revista Portuguesa de Cardiologia, vol. 30, no. 5, pp. 479–507, 2011. View at Google Scholar · View at Scopus
  31. C. W. Parrott, K. M. Burnham, C. Quale, and D. L. Lewis, “Comparison of changes in ejection fraction to changes in impedance cardiography cardiac index and systolic time ratio,” Congestive Heart Failure, vol. 10, supplement 2, pp. 11–13, 2004. View at Google Scholar · View at Scopus
  32. M. A. Silver, P. Cianci, S. Brennan, H. Longeran-Thomas, and F. Ahmad, “Evaluation of impedance cardiography as an alternative to pulmonary artery catheterization in critically ill patients,” Congestive Heart Failure, vol. 10, no. 2, pp. 17–21, 2004. View at Google Scholar · View at Scopus
  33. M. Packer, W. T. Abraham, M. R. Mehra et al., “Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure,” Journal of the American College of Cardiology, vol. 47, no. 11, pp. 2245–2252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Cianci, H. Lonergan-Thomas, S. Brennan, and S. Silver, “Bedside use of impedance cardiography to document and monitor heart failure with preserved systolic function: delineation of impaired stroke volume reserve,” Journal of Cardiac Failure, vol. 9, supplement, p. S95, 2003. View at Google Scholar
  35. M. F. L. Ramirez, C. E. Marinas, M. E. Yamamoto, and E. Caguioa, “Impedance Cardiography in heart failure patients in the intensive care unit: its value in the detection of left ventricular systolic dysfunction and correlation with the echocardiogram,” Journal of the American College of Cardiology, vol. 43, no. 5, supplement, p. 207A, 2004. View at Google Scholar
  36. S. Lalande, C. E. Luoma, A. D. Miller, and B. D. Johnson, “Expiratory loading improves cardiac output during exercise in heart failure,” Medicine & Science in Sports & Exercise, vol. 44, no. 12, pp. 2309–2314, 2012. View at Google Scholar
  37. M. Bilińska, M. Kosydar-Piechna, A. Gasiorowska et al., “Influence of dynamic training on hemodynamic, neurohormonal responses to static exercise and on inflammatory markers in patients after coronary artery bypass grafting,” Circulation Journal, vol. 74, no. 12, pp. 2598–2604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. T. Maeder, H. Rickli, M. E. Pfisterer et al., “Incidence, clinical predictors, and prognostic impact of worsening renal function in elderly patients with chronic heart failure on intensive medical therapy,” American Heart Journal, vol. 163, no. 3, pp. 407–414, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Weil, T. Eschenhagen, S. Hirt et al., “Preserved frank-starling mechanism in human end stage heart failure,” Cardiovascular Research, vol. 37, no. 2, pp. 541–548, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Fukuta and W. C. Little, “The cardiac cycle and the physiologic basis of left ventricular contraction, ejection, relaxation, and filling,” Heart Failure Clinics, vol. 4, no. 1, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Stelzer and R. L. Moss, “Contributions of stretch activation to length-dependent contraction in murine myocardium,” Journal of General Physiology, vol. 128, no. 4, pp. 461–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. D. E. R. Warburton, A. Taylor, S. S. D. Bredin, B. T. A. Esch, J. M. Scott, and M. J. Haykowsky, “Central haemodynamics and peripheral muscle function during exercise in patients with chronic heart failure,” Applied Physiology, Nutrition and Metabolism, vol. 32, no. 2, pp. 318–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Ross Jr. and E. Braunwald, “Studies on Starling's law of the heart. IX. The effects of impeding venous return on performance of the normal and failing human left ventricle,” Circulation, vol. 30, pp. 719–727, 1964. View at Google Scholar · View at Scopus
  44. M. J. Sullivan and F. R. Cobb, “Central hemodynamic response to exercise in patients with chronic heart failure,” Chest, vol. 101, no. 5, supplement 5, pp. 340S–346S, 1992. View at Google Scholar · View at Scopus
  45. G. Papathanasiou, N. Tsamis, P. Georgiadou, and S. Adamopoulos, “Beneficial effects of physical training and methodology of exercise prescription in patients with heart failure,” Hellenic Journal of Cardiology, vol. 49, no. 4, pp. 267–277, 2008. View at Google Scholar · View at Scopus