Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 623684, 8 pages
http://dx.doi.org/10.1155/2013/623684
Review Article

Hypoxic Pulmonary Vasoconstriction in Humans

1Department of Cardiothoracic Surgery, Castle Hill Hospital, Cottingham HU16 5JQ, UK
2Department of Academic Medicine, Castle Hill Hospital, Cottingham HU16 5JQ, UK

Received 15 April 2013; Revised 4 July 2013; Accepted 22 July 2013

Academic Editor: Zsolt Bagi

Copyright © 2013 Priyadharshanan Ariyaratnam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. R. Preston, “Clinical perspective of hypoxia-mediated pulmonary hypertension,” Antioxidants and Redox Signaling, vol. 9, no. 6, pp. 711–721, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. T. Sylvester, L. A. Shimoda, P. I. Aaronson, and J. P. T. Ward, “Hypoxic pulmonary vasoconstriction,” Physiological Reviews, vol. 92, no. 1, pp. 367–520, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Kay, “Comparative morphologic features of the pulmonary vasculature in mammals,” American Review of Respiratory Disease, vol. 128, no. 2, part 2, pp. S53–S57, 1983. View at Google Scholar · View at Scopus
  4. E. D. Michelakis, S. L. Archer, and E. K. Weir, “Acute hypoxic pulmonary vasoconstriction: a model of oxygen sensing,” Physiological Research, vol. 44, no. 6, pp. 361–367, 1995. View at Google Scholar · View at Scopus
  5. L. Wang, J. Yin, H. T. Nickles et al., “Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction,” The Journal of Clinical Investigation, vol. 122, no. 11, pp. 4218–4230, 2012. View at Google Scholar
  6. C. Tang, W. K. To, F. Meng, Y. Wang, and Y. Gu, “A role for receptor-operated Ca2+ entry in human pulmonary artery smooth muscle cells in response to Hypoxia,” Physiological Research, vol. 59, no. 6, pp. 909–918, 2010. View at Google Scholar · View at Scopus
  7. F. Meng, W. K. L. To, and Y. Gu, “Inhibition effect of arachidonic acid on hypoxia-induced [Ca2+]i elevation in PC12 cells and human pulmonary artery smooth muscle cells,” Respiratory Physiology and Neurobiology, vol. 162, no. 1, pp. 18–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. X.-R. Yang, M.-J. Lin, and J. S. K. Sham, “Physiological functions of transient receptor potential channels in pulmonary arterial smooth muscle cells,” Advances in Experimental Medicine and Biology, vol. 661, pp. 109–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Xia, Z. Fu, J. Hu et al., “TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension,” American Journal of Physiology. Cell Physiology, 2013. View at Publisher · View at Google Scholar
  10. X.-R. Yang, A. H. Y. Lin, J. M. Hughes et al., “Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia-induced myogenic tone and pulmonary hypertension,” American Journal of Physiology. Lung Cellular and Molecular Physiology, vol. 302, no. 6, pp. L555–L568, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Mehta, J. L. Campian, J. Guardiola, J. A. Cabrera, E. K. Weir, and J. W. Eaton, “Generation of oxidants by hypoxic human pulmonary and coronary smooth-muscle cells,” Chest, vol. 133, no. 6, pp. 1410–1414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. B. Waypa, J. D. Marks, R. D. Guzy et al., “Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation,” American Journal of Respiratory and Critical Care Medicine, vol. 187, no. 4, pp. 424–432, 2013. View at Google Scholar
  13. T. R. Murray, L. Chen, B. E. Marshall, and E. J. Macarak, “Hypoxic contraction of cultured pulmonary vascular smooth muscle cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 3, no. 5, pp. 457–465, 1990. View at Google Scholar · View at Scopus
  14. W. Wu, O. Platoshyn, A. L. Firth, and J. X.-J. Yuan, “Hypoxia divergently regulates production of reactive oxygen species in human pulmonary and coronary artery smooth muscle cells,” American Journal of Physiology. Lung Cellular and Molecular Physiology, vol. 293, no. 4, pp. L952–L959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Wojciak-Stothard, L. Zhao, E. Oliver et al., “Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia,” Circulation Research, vol. 110, no. 11, pp. 1423–1434, 2012. View at Google Scholar
  16. L. Yu, D. A. Quinn, H. G. Garg, and C. A. Hales, “Heparin inhibits pulmonary artery smooth muscle cell proliferation through guanine nucleotide exchange factor-H1/RhoA/Rho kinase/p27,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 4, pp. 524–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Takemoto, J. Sun, J. Hiroki, H. Shimokawa, and J. K. Liao, “Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase,” Circulation, vol. 106, no. 1, pp. 57–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Yang, Z. Liu, H. Zhang, and Q. Luo, “Ghrelin protects human pulmonary artery endothelial cells against hypoxia-induced injury via PI3-kinase/Akt,” Peptides, vol. 42, pp. 112–117, 2013. View at Google Scholar
  19. B. B. Beleslin-Čokić, V. P. Čokić, L. Wang et al., “Erythropoietin and hypoxia increase erythropoietin receptor and nitric oxide levels in lung microvascular endothelial cells,” Cytokine, vol. 54, no. 2, pp. 129–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Krotova, J. M. Patel, E. R. Block, and S. Zharikov, “Hypoxic upregulation of arginase II in human lung endothelial cells,” American Journal of Physiology. Cell Physiology, vol. 299, no. 6, pp. C1541–C1548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Yu and C. A. Hales, “Hypoxia does neither stimulate pulmonary artery endothelial cell proliferation in mice and rats with pulmonary hypertension and vascular remodeling nor in human pulmonary artery endothelial cells,” Journal of Vascular Research, vol. 48, no. 6, pp. 465–475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Hoshino, H. Obara, M. Kusunoki, Y. Fujii, and S. Iwai, “Hypoxic contractile response in isolated human pulmonary artery: role of calcium ion,” Journal of Applied Physiology, vol. 65, no. 6, pp. 2468–2474, 1988. View at Google Scholar · View at Scopus
  23. A. T. Demiryurek, R. M. Wadsworth, K. A. Kane, and A. J. Peacock, “The role of endothelium in hypoxic constriction of human pulmonary artery rings,” American Review of Respiratory Disease, vol. 147, no. 2, pp. 283–290, 1993. View at Google Scholar · View at Scopus
  24. M. Ohe, M. Ogata, D. Katayose, and T. Takishima, “Hypoxic contraction of pre-stretched human pulmonary artery,” Respiration Physiology, vol. 87, no. 1, pp. 105–114, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Ariyaratnam, M. Loubani, R. T. Bennett et al., “hyperoxic vasoconstriction of human pulmonary arteries: a novel insight into acute ventricular septal defects,” ISRN Cardiology, vol. 2013, Article ID 685735, 4 pages, 2013. View at Publisher · View at Google Scholar
  26. E. Cases, J. M. Vila, P. Medina, M. Aldasoro, G. Segarra, and S. Lluch, “Increased responsiveness of human pulmonary arteries in patients with positive bronchodilator response,” British Journal of Pharmacology, vol. 119, no. 7, pp. 1337–1340, 1996. View at Google Scholar · View at Scopus
  27. V. I. Peinado, R. París, J. Ramírez, J. Roca, R. Rodriguez-Roisin, and J. A. Barberà, “Expression of BKCa channels in human pulmonary arteries: relationship with remodeling and hypoxic pulmonary vasoconstriction,” Vascular Pharmacology, vol. 49, no. 4-6, pp. 178–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Kapanci, A. Assimacopoulos, and C. Irle, “'Contractile interstitial cells' in pulmonary alveolar septa: a possible regulator of ventilation/perfusion ratio? Ultrastructural, immunofluorescence, and in vitro studies,” Journal of Cell Biology, vol. 60, no. 2, pp. 375–392, 1974. View at Google Scholar · View at Scopus
  29. T. J. George, G. J. Arnaoutakis, C. A. Beaty et al., “A physiologic and biochemical profile of clinically rejected lungs on a normothermic ex vivo lung perfusion platform,” Journal of Surgical Research, vol. 183, no. 1, pp. 75–83, 2012. View at Publisher · View at Google Scholar
  30. A. P. Fishman, A. Himmelstein, H. W. Fritts Jr, and A. Cournand, “Blood flow through each lung in man during unilateral hypoxia,” The Journal of Clinical Investigation, vol. 34, no. 4, pp. 637–646, 1955. View at Google Scholar
  31. J. G. Defares, G. Lundin, M. Arborelius Jr., and R. Stromblad, “Effect of %unilateral hypoxia' on pulmonary blood flow distribution in normal subjects,” Journal of Applied Physiology, vol. 15, pp. 169–174, 1960. View at Google Scholar · View at Scopus
  32. M. Arborelius Jr., G. Lundin, L. Svanberg, and J. G. Defares, “Influence of unilateral hypoxia on blood flow through the lungs in man in lateral position,” Journal of Applied Physiology, vol. 15, pp. 595–597, 1960. View at Google Scholar
  33. K. Hambraeus-Jonzon, L. Bindslev, Å. J. Mellgård, and G. Hedenstierna, “Hypoxic pulmonary vasoconstriction in human lungs: a stimulus-response study,” Anesthesiology, vol. 86, no. 2, pp. 308–315, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. B. A. Freeman, M. K. Topolosky, and J. D. Crapo, “Hyperoxia increases oxygen radical production in rat lung homogenates,” Archives of Biochemistry and Biophysics, vol. 216, no. 2, pp. 477–484, 1982. View at Google Scholar · View at Scopus
  35. R. M. Tate, H. G. Morris, W. R. Schroeder, and J. E. Repine, “Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs,” Journal of Clinical Investigation, vol. 74, no. 2, pp. 608–613, 1984. View at Google Scholar · View at Scopus
  36. N. W. Morrell, K. S. Nijran, T. Biggs, and W. A. Seed, “Magnitude and time course of acute hypoxic pulmonary vasoconstriction in man,” Respiration Physiology, vol. 100, no. 3, pp. 271–281, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. A. J. Carlsson, L. Bindslev, and G. Hedensierna, “Hypoxia-induced pulmonary vasoconstriction in the human lung. The effect of isoflurane anesthesia,” Anesthesiology, vol. 66, no. 3, pp. 312–316, 1987. View at Google Scholar · View at Scopus
  38. C. G. Frostell, H. Blomqvist, G. Hedenstierna, J. Lundberg, and W. M. Zapol, “Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation,” Anesthesiology, vol. 78, no. 3, pp. 427–435, 1993. View at Google Scholar · View at Scopus
  39. N. P. Talbot, G. M. Balanos, K. L. Dorrington, and P. A. Robbins, “Two temporal components within the human pulmonary vascular response to ~2 h of isocapnic hypoxia,” Journal of Applied Physiology, vol. 98, no. 3, pp. 1125–1139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. R. I. Cargill and B. J. Lipworth, “Acute effects of ANP and BNP on hypoxic pulmonary vasoconstriction in humans,” British Journal of Clinical Pharmacology, vol. 40, no. 6, pp. 585–590, 1995. View at Google Scholar · View at Scopus
  41. K. L. Dorrington, C. Clar, J. D. Young, M. Jonas, J. G. Tansley, and P. A. Robbins, “Time course of the human pulmonary vascular response to 8 hours of isocapnic hypoxia,” American Journal of Physiology. Heart and Circulatory Physiology, vol. 273, no. 3, part 2, pp. H1126–H1134, 1997. View at Google Scholar · View at Scopus
  42. D. Penaloza, F. Sime, N. Banchero, and R. Gamboa, “Pulmonary hypertension in healthy man born and living at high altitude: fifth Aspen Lung Conference: normal and abnormal pulmonary circulation,” Medicine Thoracic, vol. 19, pp. 449–460, 1962. View at Google Scholar
  43. J. Arias-Stella and S. Recavarren, “Right ventricular hypertrophy in native children living at high altitude,” The American Journal of Pathology, vol. 41, pp. 54–64, 1962. View at Google Scholar · View at Scopus
  44. B. M. Groves, T. Droma, J. R. Sutton et al., “Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m,” Journal of Applied Physiology, vol. 74, no. 1, pp. 312–318, 1993. View at Google Scholar · View at Scopus
  45. C. Santos, M. Ferrer, J. Roca, A. Torres, C. Hernández, and R. Rodriguez-Roisin, “Pulmonary gas exchange response to oxygen breathing in acute lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 1, pp. 26–31, 2000. View at Google Scholar · View at Scopus
  46. P. G. Boysen, A. J. Block, and J. W. Wynne, “Nocturnal pulmonary hypertension in patients with chronic obstructive pulmonary disease,” Chest, vol. 76, no. 5, pp. 536–542, 1979. View at Google Scholar · View at Scopus
  47. A. Chaouat, E. Weitzenblum, J. Krieger, M. Oswald, and R. Kessler, “Pulmonary hemodynamics in the obstructive sleep apnea syndrome. Results in 220 consecutive patients,” Chest, vol. 109, no. 2, pp. 380–386, 1996. View at Google Scholar · View at Scopus
  48. C. M. Wiener, M. R. Banta, M. S. Dowless, N. A. Flavahan, and J. T. Sylvester, “Mechanisms of hypoxic vasodilation in ferret pulmonary arteries,” American Journal of Physiology. Lung Cellular and Molecular Physiology, vol. 269, no. 3, part 1, pp. L351–L357, 1995. View at Google Scholar · View at Scopus
  49. F. G. Miller, “Clinical research with healthy volunteers: an ethical framework,” Journal of Investigative Medicine, vol. 51, pp. S2–S5, 2003. View at Google Scholar · View at Scopus