Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 643575, 11 pages
http://dx.doi.org/10.1155/2013/643575
Review Article

Highlights from the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength or FAMuSS Study

1Department of Kinesiology and Human Performance Laboratory, Neag School of Education, University of Connecticut, Gampel Pavilion Room 206, 2095 Hillside Road, U-1110, Storrs, CT 06269-1110, USA
2Children’s National Medical Center, 111 Michigan Avenue, N.W., Washington, DC 20010-2970, USA
3Division of Cardiology, Hartford Hospital, 85 Jefferson Street, Hartford, CT 06106, USA

Received 5 October 2013; Accepted 20 November 2013

Academic Editor: J. Timothy Lightfoot

Copyright © 2013 Linda S. Pescatello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The purpose of the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength study or FAMuSS was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT). The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS participants were 1300 young (24 years), healthy men (42%) and women (58%) that were primarily of European-American descent. They were genotyped for ~500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body composition, cardiometabolic biomarkers, and physical activity.