Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 650989, 9 pages
http://dx.doi.org/10.1155/2013/650989
Review Article

Lipoprotein(a) in Cardiovascular Diseases

1International Ph. D. Program in Neuropharmacology, University of Catania, 95123 Catania, Italy
2Department of Senescence, Urological, and Neurological Sciences, University of Catania, 95126 Catania, Italy
3Department of Biomedical Sciences, University of Catania, 95124 Catania, Italy
4Department of Neurosciences, University of Catania, 95123 Catania, Italy
5Department of Biological Chemistry, Medical Chemistry, and Molecular Biology, University of Catania, 95123 Catania, Italy
6Pediatric Cardiology and Cardiac Surgery Department, Guch Unit, IRCCS Policlinico San Donato, 20097 Milan, Italy

Received 6 September 2012; Revised 6 November 2012; Accepted 8 November 2012

Academic Editor: Joseph Fomusi Ndisang

Copyright © 2013 Michele Malaguarnera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Klingenberg and G. K. Hansson, “Treating inflammation in atherosclerotic cardiovascular disease: emerging therapies,” European Heart Journal, vol. 30, no. 23, pp. 2838–2844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Ross, “Atherosclerosis is—an inflammatory disease,” American Heart Journal, vol. 138, no. 5, pp. S419–S420, 1999. View at Google Scholar · View at Scopus
  3. M. Malaguarnera, M. Vacante, M. Motta, M. Malaguarnera, G. Li Volti, and F. Galvano, “Effect of l-carnitine on the size of low-density lipoprotein particles in type 2 diabetes mellitus patients treated with simvastatin,” Metabolism, vol. 58, no. 11, pp. 1618–1623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Malaguarnera, M. Vacante, T. Avitabile, M. Malaguarnera, L. Cammalleri, and M. Motta, “L-Carnitine supplementation reduces oxidized LDL cholesterol in patients with diabetes,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 71–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Motta, E. Bennati, E. Cardillo, L. Ferlito, M. Passamonte, and M. Malaguarnera, “The significance of apolipoprotein-B (Apo-B) in the elderly as a predictive factor of cardio-cerebrovascular complications,” Archives of Gerontology and Geriatrics, vol. 49, no. 1, pp. 162–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. J. Packard, “Apolipoproteins: the new prognostic indicator?” European Heart Journal, Supplement, vol. 5, pp. D9–D16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. D. Sniderman, C. D. Furberg, A. Keech et al., “Apolipoproteins versus lipids as indices of coronary risk and as targets for statin treatment,” The Lancet, vol. 361, no. 9359, pp. 777–780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Walldius and I. Jungner, “Apolipoprotein B and apolipoprotein A-I: risk indicators of coronary heart disease and targets for lipid-modifying therapy,” Journal of Internal Medicine, vol. 255, no. 2, pp. 188–205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Utermann, H. J. Menzel, H. G. Kraft, H. C. Duba, H. G. Kemmler, and C. Seitz, “Lp(a) glycoprotein phenotypes. Inheritance and relation to Lp(a)-lipoprotein concentrations in plasma,” Journal of Clinical Investigation, vol. 80, no. 2, pp. 458–465, 1987. View at Google Scholar · View at Scopus
  10. G. M. Fless, C. A. Rolih, and A. M. Scanu, “Heterogeneity of human plasma lipoprotein (a). Isolation and characterization of the lipoprotein subspecies and their apoproteins,” Journal of Biological Chemistry, vol. 259, no. 18, pp. 11470–11478, 1984. View at Google Scholar · View at Scopus
  11. K. M. Kostner, G. Maurer, K. Huber et al., “Urinary excretion of apo(a) fragments: role in apo(a) catabolism,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 8, pp. 905–911, 1996. View at Google Scholar · View at Scopus
  12. V. Mooser, S. M. Marcovina, A. L. White, and H. H. Hobbs, “Kringle-containing fragments of apolipoprotein(a) circulate in human plasma and are excreted into the urine,” Journal of Clinical Investigation, vol. 98, no. 10, pp. 2414–2424, 1996. View at Google Scholar · View at Scopus
  13. R. M. Lawn, D. P. Wade, R. E. Hammer, G. Chiesa, J. G. Verstuyft, and E. M. Rubin, “Atherogenesis in transgenic mice expressing human apolipoprotein(a),” Nature, vol. 360, no. 6405, pp. 670–672, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. K. M. Kostner, R. Oberbauer, U. Hoffmann, T. Stefenelli, G. Maurer, and B. Watschinger, “Urinary excretion of apo(a) in patients after kidney transplantation,” Nephrology Dialysis Transplantation, vol. 12, no. 12, pp. 2673–2678, 1997. View at Google Scholar · View at Scopus
  15. V. Mooser, S. M. Marcovina, J. Wang, and H. H. Hobbs, “High plasma levels of apo(a) fragments in Caucasians and African-Americans with end-stage renal disease: implications for plasma Lp(a) assay,” Clinical Genetics, vol. 52, no. 5, pp. 387–392, 1997. View at Google Scholar · View at Scopus
  16. K. Oida, H. Takai, H. Maeda et al., “Apolipoprotein(a) is present in urine and its excretion is decreased in patients with renal failure,” Clinical Chemistry, vol. 38, no. 11, pp. 2244–2248, 1992. View at Google Scholar · View at Scopus
  17. A. M. Scanu, “Structural basis for the presumptive atherothrombogenic action of lipoprotein(a). Facts and speculations,” Biochemical Pharmacology, vol. 46, no. 10, pp. 1675–1680, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Motta, I. Giugno, P. Ruello, G. Pistone, I. Di Fazio, and M. Malaguarnera, “Lipoprotein (a) behaviour in patients with hepatocellular carcinoma,” Minerva Medica, vol. 92, no. 5, pp. 301–305, 2001. View at Google Scholar · View at Scopus
  19. F. Galvano, M. Malaguarnera, M. Vacante et al., “The physiopathology of lipoprotein (a),” Frontiers in Bioscience, vol. 2, pp. 866–875, 2010. View at Google Scholar · View at Scopus
  20. F. Galvano, G. Li Volti, M. Malaguarnera et al., “Effects of simvastatin and carnitine versus simvastatin on lipoprotein(a) and apoprotein(a) in type 2 diabetes mellitus,” Expert Opinion on Pharmacotherapy, vol. 10, no. 12, pp. 1875–1882, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Allen, S. Khan, S. P. Tam, M. Koschinsky, P. Taylor, and M. Yacoub, “Expression of adhesion molecules by Lp(a): a potential novel mechanism for its atherogenicity,” FASEB Journal, vol. 12, no. 15, pp. 1765–1776, 1998. View at Google Scholar · View at Scopus
  22. S. Takami, S. Yamashita, S. Kihara et al., “Lipoprotein(a) enhances the expression of intercellular adhesion molecule-1 in cultured human umbilical vein endothelial cells,” Circulation, vol. 97, no. 8, pp. 721–728, 1998. View at Google Scholar · View at Scopus
  23. S. P. Zhao and D. Y. Xu, “Oxidized lipoprotein(a) enhanced the expression of P-selectin in cultured human umbilical vein endothelial cells,” Thrombosis Research, vol. 100, no. 6, pp. 501–510, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Tabas, Y. Li, R. W. Brocia, Shu Wen Xu, T. L. Swenson, and K. J. Williams, “Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation,” Journal of Biological Chemistry, vol. 268, no. 27, pp. 20419–20432, 1993. View at Google Scholar · View at Scopus
  25. J. Loscalzo, “Lipoprotein(a). A unique risk factor for atherothrombotic disease,” Arteriosclerosis, vol. 10, no. 5, pp. 672–679, 1990. View at Google Scholar · View at Scopus
  26. Y. B. De Rijke, G. Jurgens, E. M. A. J. Hessels, A. Hermann, and T. J. C. van Berkel, “In vivo fate and scavenger receptor recognition of oxidized lipoprotein[a] isoforms in rats,” Journal of Lipid Research, vol. 33, no. 9, pp. 1315–1325, 1992. View at Google Scholar · View at Scopus
  27. M. J. Chapman, T. Huby, F. Nigon, and J. Thillet, “Lipoprotein (a): implication in atherothrombosis,” Atherosclerosis, vol. 110, pp. S69–S75, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. N. S. Haque, X. Zhang, D. L. French et al., “CC chemokine I-309 is the principal monocyte chemoattractant induced by apolipoprotein(a) in human vascular endothelial cells,” Circulation, vol. 102, no. 7, pp. 786–792, 2000. View at Google Scholar · View at Scopus
  29. M. Poon, X. Zhang, K. Dunsky, M. B. Taubman, and P. C. Harpel, “Apolipoprotein(a) is a human vascular endothelial cell agonist: studies on the induction in endothelial cells of monocyte chemotactic factor activity,” Clinical Genetics, vol. 52, no. 5, pp. 308–313, 1997. View at Google Scholar · View at Scopus
  30. Y. B. De Rijke, C. J. M. Vogelezang, T. J. C. Van Berkel et al., “Susceptibility of low-density lipoproteins to oxidation in coronary bypass patients,” The Lancet, vol. 340, no. 8823, pp. 858–859, 1992. View at Google Scholar · View at Scopus
  31. M. Naruszewicz, E. Selinger, R. Dufour, and J. Davignon, “Probucol protects lipoprotein(a) against oxidative modification,” Metabolism, vol. 41, no. 11, pp. 1225–1228, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Huby, J. Chapman, and J. Thillet, “Pathophysiological implication of the structural domains of lipoprotein(a),” Atherosclerosis, vol. 133, no. 1, pp. 1–6, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Morishita, J. Ishii, Y. Kusumi et al., “Association of serum oxidized lipoprotein(a) concentration with coronary artery disease: potential role of oxidized lipoprotein(a) in the vasucular wall,” Journal of Atherosclerosis and Thrombosis, vol. 16, no. 4, pp. 410–418, 2009. View at Google Scholar · View at Scopus
  34. H. Sun, H. Unoki, X. Wang et al., “Lipoprotein(a) enhances advanced atherosclerosis and vascular calcification in WHHL transgenic rabbits expressing human apolipoprotein(a),” Journal of Biological Chemistry, vol. 277, no. 49, pp. 47486–47492, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Komai, R. Morishita, S. Yamada et al., “Mitogenic activity of oxidized lipoprotein (a) on human vascular smooth muscle cells,” Hypertension, vol. 40, no. 3, pp. 310–314, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Doucet, T. Huby, J. Ruiz, M. J. Chapman, and J. Thillet, “Non-enzymatic glycation of lipoprotein(a) in vitro and in vivo,” Atherosclerosis, vol. 118, no. 1, pp. 135–143, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Uemura, H. Matsushita, W. Li et al., “Diabetes mellitus enhances vascular matrix metalloproteinase activity role of oxidative stress,” Circulation Research, vol. 88, no. 12, pp. 1291–1298, 2001. View at Google Scholar · View at Scopus
  39. W. Eberhardt, T. Beeg, K. F. Beck et al., “Nitric oxide modulates expression of matrix metalloproteinase-9 in rat mesangial cells,” Kidney International, vol. 57, no. 1, pp. 59–69, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. M. W. Radomski, R. M. J. Palmer, and S. Moncada, “Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium,” The Lancet, vol. 2, no. 8567, pp. 1057–1058, 1987. View at Google Scholar · View at Scopus
  41. J. Aznar, A. Estelles, M. Breto, and F. Espana, “Euglobulin clot lysis induced by tissue type plasminogen activator in subjects with increased levels and different isoforms of lipoprotein (a),” Thrombosis Research, vol. 72, no. 5, pp. 459–465, 1993. View at Publisher · View at Google Scholar · View at Scopus
  42. E. B. Smith and S. Cochran, “Factors influencing the accumulation in fibrous plaques of lipid derived from low density lipoprotein. II. Preferential immobilization of lipoprotein (a) (Lp(a)),” Atherosclerosis, vol. 84, no. 2-3, pp. 173–181, 1990. View at Google Scholar · View at Scopus
  43. U. Beisiegel, A. Niendorf, K. Wolf, T. Reblin, and M. Rath, “Lipoprotein(a) in the arterial wall,” European Heart Journal, vol. 11, pp. 174–183, 1990. View at Google Scholar · View at Scopus
  44. M. Pellegrino, E. Furmaniak-Kazmierczak, J. C. LeBlanc et al., “The apolipoprotein(a) component of lipoprotein(a) stimulates actin stress fiber formation and loss of cell-cell contact in cultured endothelial cells,” Journal of Biological Chemistry, vol. 279, no. 8, pp. 6526–6533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J. N. Cohn and S. M. Finkelstein, “Abnormalities of vascular compliance in hypertension, aging and heart failure,” Journal of Hypertension, vol. 10, no. 6, pp. S61–S64, 1992. View at Google Scholar · View at Scopus
  46. P. Riis Hansen, A. Kharazmi, M. Jauhiainen, and C. Ehnholm, “Induction of oxygen free radical generation in human monocytes by lipoprotein(a),” European Journal of Clinical Investigation, vol. 24, no. 7, pp. 497–499, 1994. View at Google Scholar · View at Scopus
  47. J. Fan, H. Sun, H. Unoki, M. Shiomi, and T. Watanabe, “Enhanced atherosclerosis in Lp(a) WHHL transgenic rabbits,” Annals of the New York Academy of Sciences, vol. 947, pp. 362–365, 2001. View at Google Scholar · View at Scopus
  48. T. Ichikawa, H. Unoki, H. Sun et al., “Lipoprotein(a) promotes smooth muscle cell proliferation and dedifferentiation in atherosclerotic lesions of human apo(a) transgenic rabbits,” American Journal of Pathology, vol. 160, no. 1, pp. 227–236, 2002. View at Google Scholar · View at Scopus
  49. J. Fan and T. Watanabe, “Inflammatory reactions in the pathogenesis of atherosclerosis,” Journal of Atherosclerosis and Thrombosis, vol. 10, no. 2, pp. 63–71, 2003. View at Google Scholar · View at Scopus
  50. S. Kojima, P. C. Harpel, and D. B. Rifkin, “Lipoprotein (a) inhibits the generation of transforming growth factor β: an endogenous inhibitor of smooth muscle cell migration,” Journal of Cell Biology, vol. 113, no. 6, pp. 1439–1445, 1991. View at Google Scholar · View at Scopus
  51. R. M. Lawn, A. D. Pearle, L. L. Kunz et al., “Feedback mechanism of focal vascular lesion formation in transgenic apolipoprotein(a) mice,” Journal of Biological Chemistry, vol. 271, no. 49, pp. 31367–31371, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. O. R. Etingin, D. P. Hajjar, K. A. Hajjar, P. C. Harpel, and R. L. Nachman, “Lipoprotein (a) regulates plasminogen activator inhibitor-1 expression in endothelial cells: a potential mechanism in thrombogenesis,” Journal of Biological Chemistry, vol. 266, no. 4, pp. 2459–2465, 1991. View at Google Scholar · View at Scopus
  53. J. Thillet, C. Doucet, J. Chapman, B. Herbeth, D. Cohen, and L. Faure-Delanef, “Elevated lipoprotein(a) levels and small apo(a) isoforms are compatible with longevity evidence from a large population of French centenarians,” Atherosclerosis, vol. 136, no. 2, pp. 389–394, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Malaguarnera, I. Giugno, P. Ruello et al., “Lipid profile variations in a group of healthy elderly and centenarians,” European Review for Medical and Pharmacological Sciences, vol. 2, no. 2, pp. 75–79, 1998. View at Google Scholar · View at Scopus
  55. M. Malaguarnera, P. Ruello, M. Rizzo et al., “Lipoprotein (a) levels in centenarians,” Archives of Gerontology and Geriatrics, vol. 22, no. 1, pp. 385–388, 1996. View at Google Scholar · View at Scopus
  56. G. Alfthan, J. Pekkanen, M. Jauhiainen et al., “Relation of serum homocysteine and lipoprotein(a) concentrations to atherosclerotic disease in a prospective Finnish population based study,” Atherosclerosis, vol. 106, no. 1, pp. 9–19, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Assmann, H. Schulte, and A. Von Eckardstein, “Hypertriglyceridemia and elevated lipoprotein(a) are risk factors for major coronary events in middle-aged men,” American Journal of Cardiology, vol. 77, no. 14, pp. 1179–1184, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. M. P. Coleman, T. J. A. Key, D. Y. Wang et al., “A prospective study of obesity, lipids, apolipoproteins and ischaemic heart disease in women,” Atherosclerosis, vol. 92, no. 2-3, pp. 177–185, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Cremer, D. Nagel, H. Mann et al., “Ten-year follow-up results from the Goettingen Risk, Incidence and Prevalence Study (GRIPS). I. Risk factors for myocardial infarction in a cohort of 5790 men,” Atherosclerosis, vol. 129, no. 2, pp. 221–230, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Jauhiainen, P. Koskinen, C. Ehnholm et al., “Lipoprotein (a) and coronary heart disease risk: a nested case-control study of the Helsinki Heart Study participants,” Atherosclerosis, vol. 89, no. 1, pp. 59–67, 1991. View at Google Scholar · View at Scopus
  61. I. C. Klausen, A. Sjøl, P. S. Hansen et al., “Apolipoprotein(a) isoforms and coronary heart disease in men A nested case-control study,” Atherosclerosis, vol. 132, no. 1, pp. 77–84, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. P. M. Ridker, C. H. Hennekens, and M. J. Stampfer, “A prospective study of lipoprotein(a) and the risk of myocardial infarction,” Journal of the American Medical Association, vol. 270, no. 18, pp. 2195–2199, 1993. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Rosengren, L. Wilhelmsen, E. Eriksson, B. Risberg, and H. Wedel, “Lipoprotein (a) and coronary heart disease: a prospective case-control study in a general population sample of middle aged men,” British Medical Journal, vol. 301, no. 6763, pp. 1248–1251, 1990. View at Google Scholar · View at Scopus
  64. E. J. Schaefer, S. Lamon-Fava, J. L. Jenner et al., “Lipoprotein(a) levels and risk of coronary heart disease in men: the lipid research clinics coronary primary prevention trial,” Journal of the American Medical Association, vol. 271, no. 13, pp. 999–1003, 1994. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Sigurdsson, A. Baldursdottir, H. Sigvaldason, U. Agnarsson, G. Thorgeirsson, and N. Sigfusson, “Predictive value of apolipoproteins in a prospective survey of coronary artery disease in men,” American Journal of Cardiology, vol. 69, no. 16, pp. 1251–1254, 1992. View at Publisher · View at Google Scholar · View at Scopus
  66. N. J. Wald, M. Law, H. C. Watt et al., “Apolipoproteins and ischaemic heart disease: implications for screening,” The Lancet, vol. 343, no. 8889, pp. 75–79, 1994. View at Publisher · View at Google Scholar · View at Scopus
  67. S. H. Wild, S. P. Fortmann, and S. M. Marcovina, “A prospective case-control study of lipoprotein(a) levels and apo(a) size and risk of coronary heart disease in Stanford Five-City project participants,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 5, pp. 239–245, 1997. View at Google Scholar · View at Scopus
  68. A. G. Bostom, D. R. Gagnon, L. A. Cupples et al., “A prospective investigation of elevated lipoprotein (a) detected by electrophoresis and cardiovascular disease in women: the Framingham Heart Study,” Circulation, vol. 90, no. 4, pp. 1688–1695, 1994. View at Google Scholar · View at Scopus
  69. A. G. Bostom, L. A. Cupples, J. L. Jenner et al., “Elevated plasma lipoprotein(a) and coronary heart disease in men aged 55 years and younger: a prospective study,” Journal of the American Medical Association, vol. 276, no. 7, pp. 544–548, 1996. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Cantin, F. Gagnon, S. Moorjani et al., “Is lipoprotein(a) an independent risk factor for ischemic heart disease in men? The Quebec cardiovascular study,” Journal of the American College of Cardiology, vol. 31, no. 3, pp. 519–525, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. M. D. Cressman, R. J. Heyka, E. P. Paganini, J. O'Neil, C. I. Skibinski, and H. F. Hoff, “Lipoprotein(a) is an independent risk factor for cardiovascular disease in hemodialysis patients,” Circulation, vol. 86, no. 2, pp. 475–482, 1992. View at Google Scholar
  72. F. Kronenberg, M. F. Kronenberg, S. Kiechl et al., “Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis: prospective results from the Bruneck study,” Circulation, vol. 100, no. 11, pp. 1154–1160, 1999. View at Google Scholar
  73. G. H. Dahlén, L. Weinehall, H. Stenlund et al., “Lipoprotein(a) and cholesterol levels act synergistically and apolipoprotein A-I is protective for the incidence of primary acute myocardial infarction in middle-aged males. An incident case-control study from Sweden,” Journal of Internal Medicine, vol. 244, no. 5, pp. 425–430, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. T. T. Nguyen, R. D. Ellefson, D. O. Hodge, K. R. Bailey, T. E. Kottke, and H. S. Abu-Lebdeh, “Predictive value of electrophoretically detected lipoprotein(a) for coronary heart disease and cerebrovascular disease in a community-based cohort of 9936 men and women,” Circulation, vol. 96, no. 5, pp. 1390–1397, 1997. View at Google Scholar · View at Scopus
  75. R. C. Hoogeveen, J. K. Gambhir, D. S. Gambhir et al., “Evaluation of Lp[a] and other independent risk factors for CHD in Asian Indians and their USA counterparts,” Journal of Lipid Research, vol. 42, no. 4, pp. 631–638, 2001. View at Google Scholar
  76. A. Dirisamer and K. Widhalm, “Lipoprotein(a) as a potent risk indicator for early cardiovascular disease,” Acta Paediatrica, vol. 91, no. 12, pp. 1313–1317, 2002. View at Google Scholar
  77. S. H. Wilson, D. S. Celermajer, A. Nakagomi, R. N. Wyndham, M. R. Janu, and S. B. Freedman, “Vascular risk factors correlate to the extent as well as the severity of coronary atherosclerosis,” Coronary Artery Disease, vol. 10, no. 7, pp. 449–453, 1999. View at Google Scholar · View at Scopus
  78. R. A. Schwartzman, I. D. Cox, J. Poloniecki, R. Crook, C. A. Seymour, and J. C. Kaski, “Elevated plasma lipoprotein(a) is associated with coronary artery disease in patients with chronic stable angina pectoris,” Journal of the American College of Cardiology, vol. 31, no. 6, pp. 1260–1266, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Imhof, D. Rothenbacher, N. Khuseyinova et al., “Plasma lipoprotein Lp(a), markers of haemostasis and inflammation, and risk and severity of coronary heart disease,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 10, no. 5, pp. 362–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. D. J. Rader, J. M. Hoeg, and H. B. Brewer, “Quantitation of plasma apolipoproteins in the primary and secondary prevention of coronary artery disease,” Annals of Internal Medicine, vol. 120, no. 12, pp. 1012–1025, 1994. View at Google Scholar · View at Scopus
  81. M. Motta, I. Giugno, S. Bosco et al., “Serum lipoprotein(a) changes in acute myocardial infarction,” Panminerva Medica, vol. 43, no. 2, pp. 77–80, 2001. View at Google Scholar · View at Scopus
  82. R. L. Desmarais, I. J. Sarembock, C. R. Ayers, S. M. Vernon, E. R. Powers, and L. W. Gimple, “Elevated serum lipoprotein(a) is a risk factor for clinical recurrence after coronary balloon angioplasty,” Circulation, vol. 91, no. 5, pp. 1403–1409, 1995. View at Google Scholar · View at Scopus
  83. H. F. Hoff, G. J. Beck, C. I. Skibinski et al., “Serum Lp(a) level as a predictor of vein graft stenosis after coronary artery bypass surgery in patients,” Circulation, vol. 77, no. 6, pp. 1238–1244, 1988. View at Google Scholar · View at Scopus
  84. M. Barbir, S. Kushwaha, B. Hunt et al., “Lipoprotein(a) and accelerated coronary artery disease in cardiac transplant recipients,” The Lancet, vol. 340, no. 8834-8835, pp. 1500–1502, 1992. View at Publisher · View at Google Scholar · View at Scopus
  85. V. M. G. Maher, B. G. Brown, S. M. Marcovina, L. A. Hillger, X. Q. Zhao, and J. J. Albers, “Effects of lowering elevated LDL cholesterol on the cardiovascular risk of lipoprotein(a),” Journal of the American Medical Association, vol. 274, no. 22, pp. 1771–1774, 1995. View at Publisher · View at Google Scholar · View at Scopus
  86. W. Patsch and A. M. Gotto, “Apolipoproteins: pathophysiology and clinical implications,” Methods in Enzymology, vol. 263, pp. 3–32, 1996. View at Google Scholar · View at Scopus
  87. J. H. Stein and R. S. Rosenson, “Lipoprotein Lp(a) excess and coronary heart disease,” Archives of Internal Medicine, vol. 157, no. 11, pp. 1170–1176, 1997. View at Google Scholar · View at Scopus
  88. Y. Igarashi, Y. Aizawa, T. Satoh, T. Konno, K. Ojima, and Y. Aizawa, “Predictors of adverse long-term outcome in acute myocardial infarction patients undergoing primary percutaneous transluminal coronary angioplasty—with special reference to the admission concentration of lipoprotein (a),” Circulation Journal, vol. 67, no. 7, pp. 605–611, 2003. View at Google Scholar · View at Scopus
  89. W. Terres, E. Tatsis, B. Pfalzer, F. U. Beil, U. Beisiegel, and C. W. Hamm, “Rapid angiographic progression of coronary artery disease in patients with elevated lipoprotein(a),” Circulation, vol. 91, no. 4, pp. 948–950, 1995. View at Google Scholar · View at Scopus
  90. A. Tamura, T. Watanabe, Y. Mikuriya, and M. Nasu, “Serum lipoprotein(a) concentrations are related to coronary disease progression without new myocardial infarction,” British Heart Journal, vol. 74, no. 4, pp. 365–369, 1995. View at Google Scholar · View at Scopus
  91. Y. Morita, H. Himeno, H. Yakuwa, and T. Usui, “Serum lipoprotein(a) level and clinical coronary stenosis progression in patients with myocardial infarction: re-revascularization rate is high in patients with high-Lp(a),” Circulation Journal, vol. 70, no. 2, pp. 156–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. W. Y. Craig, L. M. Neveux, G. E. Palomaki, M. M. Cleveland, and J. E. Haddow, “Lipoprotein(a) as a risk factor for ischemic heart disease: metaanalysis of prospective studies,” Clinical Chemistry, vol. 44, no. 11, pp. 2301–2306, 1998. View at Google Scholar · View at Scopus
  93. J. Danesh, R. Collins, and R. Peto, “Lipoprotein(a) and coronary heart disease: meta-analysis of prospective studies,” Circulation, vol. 102, no. 10, pp. 1082–1085, 2000. View at Google Scholar · View at Scopus
  94. A. Gaw, H. M. Murray, and E. A. Brown, “Plasma lipoprotein(a) [Lp(a)] concentrations and cardiovascular events in the elderly: evidence from the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER),” Atherosclerosis, vol. 180, no. 2, pp. 381–388, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Sandholzer, N. Saha, J. D. Kark et al., “Apo(a) isoforms predict risk for coronary heart disease: a study in six populations,” Arteriosclerosis and Thrombosis, vol. 12, no. 10, pp. 1214–1226, 1992. View at Google Scholar · View at Scopus
  96. J. M. Edelberg, C. F. Reilly, and S. V. Pizzo, “The inhibition of tissue type plasminogen activator by plasminogen activator inhibitor-1: the effects of fibrinogen, heparin, vitronectin, and lipoprotein(a),” Journal of Biological Chemistry, vol. 266, no. 12, pp. 7488–7493, 1991. View at Google Scholar · View at Scopus
  97. D. J. Grainger, H. L. Kirschenlohr, J. C. Metcalfe, P. L. Weissberg, D. P. Wade, and R. M. Lawn, “Proliferation of human smooth muscle cells promoted by lipoprotein(a),” Science, vol. 260, no. 5114, pp. 1655–1658, 1993. View at Google Scholar · View at Scopus
  98. G. Dahlén, “Lipoprotein (a) as a risk factor for atherosclerotic diseases,” Arctic Medical Research, vol. 47, pp. 458–461, 1998. View at Google Scholar · View at Scopus
  99. Emerging Risk Factors Collaboration, S. Erqou, S. Kaptoge et al., “Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality,” Journal of the American Medical Association, vol. 302, no. 4, pp. 412–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. P. R. Kamstrup, M. Benn, A. Tybjærg-Hansen, and B. G. Nordestgaard, “Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: the Copenhagen City Heart Study,” Circulation, vol. 117, no. 2, pp. 176–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. American Association for Clinical Chemistry, “Emerging Biomarkers for Primary Prevention of Cardiovascular Disease and Stroke,” 2009, http://www.aacc.org/members/nacb/LMPG/OnlineGuide/PublishedGuidelines/risk/Documents/EmergingCV_RiskFactors09.pdf.
  102. H. J. Milionis, A. F. Winder, and D. P. Mikhailidis, “Lipoprotein (a) and stroke,” Journal of Clinical Pathology, vol. 53, no. 7, pp. 487–496, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. B. G. Nordestgaard, M. J. Chapman, K. Ray et al., “Lipoprotein(a) as a cardiovascular risk factor: current status,” European Heart Journal, vol. 31, no. 23, pp. 2844–2853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. K. Riches and K. E. Porter, “Lipoprotein(a): cellular effects and molecular mechanisms,” Cholesterol, vol. 2012, Article ID 923289, 10 pages, 2012. View at Publisher · View at Google Scholar
  105. Dubé, J. B, M. B. Boffa, R. A. Hegele, and M. L. Koschinsky, “Lipoprotein(a): more interesting than ever after 50 years,” Current Opinion in Lipidology, vol. 23, pp. 133–140, 2012. View at Google Scholar
  106. S. Tsimikas and J. L. Hall, “Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies,” Journal of the American College of Cardiology, vol. 60, pp. 716–721, 2012. View at Google Scholar
  107. Y. Momiyama, R. Ohmori, Z. A. Fayad et al., “Associations between serum lipoprotein(a) levels and the severity of coronary and aortic atherosclerosis,” Atherosclerosis, vol. 222, no. 1, pp. 241–244, 2012. View at Google Scholar
  108. Y. Momiyama, R. Ohmori, Z. A. Fayad et al., “Associations between serum lipoprotein(a) levels and the severity of coronary and aortic atherosclerosis,” Atherosclerosis, vol. 222, no. 1, pp. 241–244, 2012. View at Google Scholar