Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 690415, 15 pages
Research Article

Isolation of Small SSEA-4-Positive Putative Stem Cells from the Ovarian Surface Epithelium of Adult Human Ovaries by Two Different Methods

1Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000 Ljubljana, Slovenia
2Institute for Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
3National Institute of Biology, Vecna Pot 111, 1000 Ljubljana, Slovenia
4BioSistemika, Tehnoloski Park 24, 1000 Ljubljana, Slovenia

Received 13 August 2012; Accepted 27 December 2012

Academic Editor: Leon Spicer

Copyright © 2013 Irma Virant-Klun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The adult ovarian surface epithelium has already been proposed as a source of stem cells and germinal cells in the literature, therefore it has been termed the “germinal epithelium”. At present more studies have confirmed the presence of stem cells expressing markers of pluripotency in adult mammalian ovaries, including humans. The aim of this study was to isolate a population of stem cells, based on the expression of pluripotency-related stage-specific embryonic antigen-4 (SSEA-4) from adult human ovarian surface epithelium by two different methods: magnetic-activated cell sorting and fluorescence-activated cell sorting. Both methods made it possible to isolate a similar, relatively homogenous population of small, SSEA-4-positive cells with diameters of up to 4 μm from the suspension of cells retrieved by brushing of the ovarian cortex biopsies in reproductive-age and postmenopausal women and in women with premature ovarian failure. The immunocytochemistry and genetic analyses revealed that these small cells—putative stem cells—expressed some primordial germ cell and pluripotency-related markers and might be related to the in vitro development of oocyte-like cells expressing some oocyte-specific transcription factors in the presence of donated follicular fluid with substances important for oocyte growth and development. The stemness of these cells needs to be further researched.