Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 703130, 13 pages
http://dx.doi.org/10.1155/2013/703130
Research Article

Unraveling the Lipolytic Activity of Thermophilic Bacteria Isolated from a Volcanic Environment

Microbiology Group, Sector of Botany, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Zografou 15784, Attica, Greece

Received 9 February 2013; Accepted 25 March 2013

Academic Editor: George Tsiamis

Copyright © 2013 Panagiota M. Stathopoulou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Vieille and G. J. Zeikus, “Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability,” Microbiology and Molecular Biology Reviews, vol. 65, no. 1, pp. 1–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Turner, G. Mamo, and E. N. Karlsson, “Potential and utilization of thermophiles and thermostable enzymes in biorefining,” Microbial Cell Factories, vol. 6, p. 9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Gupta, N. Gupta, and P. Rathi, “Bacterial lipases: an overview of production, purification and biochemical properties,” Applied Microbiology and Biotechnology, vol. 64, no. 6, pp. 763–781, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K.-E. Jaeger and T. Eggert, “Lipases for biotechnology,” Current Opinion in Biotechnology, vol. 13, no. 4, pp. 390–397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Treichel, D. de Oliveira, M. A. Mazutti, M. Di Luccio, and J. V. Oliveira, “A review on microbial lipases production,” Food and Bioprocess Technology, vol. 3, no. 2, pp. 182–196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Salameh and J. Wiegel, “Lipases from extremophiles and potential for industrial applications,” Advances in Applied Microbiology, vol. 61, pp. 253–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. N. Abd Rahman, T. C. Leow, A. B. Salleh, and M. Basri, “Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia,” BMC Microbiology, vol. 7, p. 77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Schmidt-Dannert, H. Sztajer, W. Stocklein, U. Menge, and R. D. Schmid, “Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus,” Biochimica et Biophysica Acta, vol. 1214, no. 1, pp. 43–53, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. L. D. Castro-Ochoa, C. Rodríguez-Gómez, G. Valerio-Alfaro, and R. Oliart Ros, “Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11,” Enzyme and Microbial Technology, vol. 37, no. 6, pp. 648–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Salameh and J. Wiegel, “Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica,” Applied and Environmental Microbiology, vol. 73, no. 23, pp. 7725–7731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Sinchaikul, B. Sookkheo, S. Phutrakul, F. M. Pan, and S. T. Chen, “Optimization of a thermostable lipase from Bacillus stearothermophilus p1: overexpression, purification, and characterization,” Protein Expression and Purification, vol. 22, no. 3, pp. 388–398, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Quintana-Castro, P. Díaz, G. Valerio-Alfaro, H. S. García, and R. Oliart-Ros, “Gene cloning, expression, and characterization of the Geobacillus thermoleovorans CCR11 thermoalkaliphilic lipase,” Molecular Biotechnology, vol. 42, no. 1, pp. 75–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Jiang, X. Zhou, and Z. Chen, “Cloning, expression, and biochemical characterization of a thermostable lipase from Geobacillus stearothermophilus JC,” World Journal of Microbiology and Biotechnology, vol. 26, no. 4, pp. 747–751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. C. Leow, R. N. Abd Rahman, M. Basri, and A. B. Salleh, “High level expression of thermostable lipase from Geobacillus sp. strain T1,” Bioscience, Biotechnology and Biochemistry, vol. 68, no. 1, pp. 96–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. J. Martinez, H. J. Mills, S. Story, and P. A. Sobecky, “Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico,” Environmental Microbiology, vol. 8, no. 10, pp. 1783–1796, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. G. Pachiadaki, V. Lykousis, E. G. Stefanou, and K. A. Kormas, “Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea),” FEMS Microbiology Ecology, vol. 72, no. 3, pp. 429–444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. I. Prokofeva, I. V. Kublanov, O. Nercessian et al., “Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats,” Extremophiles, vol. 9, no. 6, pp. 437–448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. I. V. Kublanov, A. A. Perevalova, G. B. Slobodkina et al., “Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon caldera, Kamchatka (Russia),” Applied and Environmental Microbiology, vol. 75, no. 1, pp. 286–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. G. F. da Cruz, C. F. F. Angolini, L. G. De Oliveira et al., “Searching for monooxygenases and hydrolases in bacteria from an extreme environment,” Applied Microbiology and Biotechnology, vol. 87, no. 1, pp. 319–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Meintanis, K. I. Chalkou, K. A. Kormas, and A. D. Karagouni, “Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island,” Biodegradation, vol. 17, no. 2, pp. 105–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Kouker and K. E. Jaeger, “Specific and sensitive plate assay for bacterial lipases,” Applied and Environmental Microbiology, vol. 53, no. 1, pp. 211–213, 1987. View at Google Scholar · View at Scopus
  22. C. Haught, D. L. Wilkinson, K. Zgafas, and R. G. Harrison, “A method to insert a DNA fragment into a double-stranded plasmid,” BioTechniques, vol. 16, no. 1, pp. 46–48, 1994. View at Google Scholar · View at Scopus
  23. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, 1989.
  24. U. Edwars, T. Rogall, H. Blocker, M. Emde, and E. C. Bottger, “Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA,” Nucleic Acids Research, vol. 17, no. 19, pp. 7843–7853, 1989. View at Google Scholar · View at Scopus
  25. D. J. Lane, “16S/23S rRNA Sequencing,” in Nucleic Acid Techniques in Bacterial Systematics, E. Stackebrandt and M. Goodfellow, Eds., pp. 115–147, John Wiley & Sons, New York, NY, USA, 1991. View at Google Scholar
  26. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Google Scholar · View at Scopus
  27. K. Tamura, D. Peterson, N. Peterson et al., “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Google Scholar
  28. J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985. View at Google Scholar
  29. K. Tamura, M. Nei, and S. Kumar, “Prospects for inferring very large phylogenies by using the neighbor-joining method,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11030–11035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Vorderwülbecke, K. Kieslich, and H. Erdmann, “Comparison of lipases by different assays,” Enzyme and Microbial Technology, vol. 14, no. 8, pp. 631–639, 1992. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Shu, R. Lin, H. Jiang, Y. Zhang, M. Wang, and J. Huang, “A rapid and efficient method for directed screening of lipase-producing Burkholderia cepacia complex strains with organic solvent tolerance from rhizosphere,” Journal of Bioscience and Bioengineering, vol. 107, no. 6, pp. 658–661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Li and X. Zhang, “Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1,” Protein Expression and Purification, vol. 42, no. 1, pp. 153–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. N. S. Abdul Hamid, H. B. Zen, O. B. Tein, Y. M. Halifah, N. Saari, and F. Abu Bakar, “Screening and identification of extracellular lipase-producing thermophilic bacteria from a Malaysian hot spring,” World Journal of Microbiology and Biotechnology, vol. 19, no. 9, pp. 961–968, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. V. A. Vargas, O. D. Delgado, R. Hatti-Kaul, and B. Mattiasson, “Lipase-producing microorganisms from a Kenyan alkaline soda lake,” Biotechnology Letters, vol. 26, no. 2, pp. 81–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-L. Reymond and P. Babiak, “Screening systems,” in White Biotechnology, R. Ulber and D. Sell, Eds., pp. 31–58, Springer, Berlin, Germany, 2007. View at Google Scholar
  36. D. Navarro, M. Couturier, G. G. D. da Silva et al., “Automated assay for screening the enzymatic release of reducing sugars from micronized biomass,” Microbial Cell Factories, vol. 9, p. 58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. T. N. Nazina, T. P. Tourova, A. B. Poltaraus et al., “Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans,” International Journal of Systematic and Evolutionary Microbiology, vol. 51, no. 2, pp. 433–446, 2001. View at Google Scholar · View at Scopus
  38. G. McMullan, J. M. Christie, T. J. Rahman, I. M. Banat, N. G. Ternan, and R. Marchant, “Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus,” Biochemical Society Transactions, vol. 32, no. 2, pp. 214–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. T. L. Maugeri, C. Gugliandolo, D. Caccamo, and E. Stackebrandt, “A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents,” Systematic and Applied Microbiology, vol. 24, no. 4, pp. 572–587, 2001. View at Google Scholar · View at Scopus
  40. T. L. Maugeri, C. Gugliandolo, D. Caccamo, and E. Stackebrandt, “Three novel halotolerant and thermophilic Geobacillus strains from shallow marine vents,” Systematic and Applied Microbiology, vol. 25, no. 3, pp. 450–455, 2002. View at Google Scholar · View at Scopus
  41. S. Canakci, K. Inan, M. Kacagan, and A. O. Belduz, “Evaluation of arabinofuranosidase and xylanase activities of Geobacillus spp. isolated from some hot springs in Turkey,” Journal of Microbiology and Biotechnology, vol. 17, no. 8, pp. 1262–1270, 2007. View at Google Scholar · View at Scopus
  42. A. Cihan, B. Ozcan, N. Tekin et al., “Phylogenetic diversity of isolates belonging to genera Geobacillus and Aeribacillus isolated from different geothermal regions of Turkey,” World Journal of Microbiology and Biotechnology, vol. 27, no. 11, pp. 2683–2696, 2011. View at Google Scholar
  43. S.-K. Tai, H.-P. Lin, J. Kuo, and J. K. Liu, “Isolation and characterization of a cellulolytic Geobacillus thermoleovorans T4 strain from sugar refinery wastewater,” Extremophiles, vol. 8, no. 5, pp. 345–349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D.-W. Lee, Y.-S. Koh, K.-J. Kim et al., “Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1,” FEMS Microbiology Letters, vol. 179, no. 2, pp. 393–400, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. R. Abdel-Fattah and A. A. Gaballa, “Identification and over-expression of a thermostable lipase from Geobacillus thermoleovorans Toshki in Escherichia coli,” Microbiological Research, vol. 163, no. 1, pp. 13–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. R. Cho, S. K. Yoo, and E. J. Kim, “Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1,” FEMS Microbiology Letters, vol. 186, no. 2, pp. 235–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Miñana-Galbis, D. L. Pinzón, J. G. Lorén, A. Manresa, and R. M. Oliart-Ros, “Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 60, no. 7, pp. 1600–1604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. D. L. Pinzón-Martínez, C. Rodríguez-Gómez, D. Miñana-Galbis et al., “Thermophilic bacteria from Mexican thermal environments: isolation and potential applications,” Environmental Technology, vol. 31, no. 8-9, pp. 957–966, 2010. View at Google Scholar
  49. M. Heyndrickx, L. Lebbe, M. Vancanneyt et al., “A polyphasic reassessment of the genus Aneurinibacillus, reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al. 1996) as Aneurinibacillus thermoaerophilus comb. nov., and emended descriptions of A. aneurinilyticus corrig., A. migulanus, and A. thermoaerophilus,” International Journal of Systematic Bacteriology, vol. 47, no. 3, pp. 808–817, 1997. View at Google Scholar · View at Scopus
  50. R. N. Allan, L. Lebbe, J. Heyrman, P. De Vos, C. J. Buchanan, and N. A. Logan, “Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica,” International Journal of Systematic and Evolutionary Microbiology, vol. 55, no. 3, pp. 1039–1050, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. B. Stott, M. A. Crowe, B. W. Mountain et al., “Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand,” Environmental Microbiology, vol. 10, no. 8, pp. 2030–2041, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Masomian, R. N. Abd Rahman, A. B. Salleh, and M. Basri, “A unique thermostable and organic solvent tolerant lipase from newly isolated Aneurinibacillus thermoaerophilus strain HZ: physical factor studies,” World Journal of Microbiology and Biotechnology, vol. 26, no. 9, pp. 1693–1701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. R. Abdel-Fattah, “Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design,” Biotechnology Letters, vol. 24, no. 14, pp. 1217–1222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Kumar, K. Kikon, A. Upadhyay, S. S. Kanwar, and R. Gupta, “Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3,” Protein Expression and Purification, vol. 41, no. 1, pp. 38–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Kumar, S. Mahajan, A. Kumar, and D. Singh, “Identification of variables and value optimization for optimum lipase production by Bacillus pumilus RK31 using statistical methodology,” New Biotechnology, vol. 28, no. 1, pp. 65–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Ertuǧrul, G. Dönmez, and S. Takaç, “Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity,” Journal of Hazardous Materials, vol. 149, no. 3, pp. 720–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. F. M. Shariff, T. C. Leow, A. D. Mukred, A. B. Salleh, M. Basri, and R. N. Abd Rahman, “Production of L2 lipase by Bacillus sp. strain L2: nutritional and physical factors,” Journal of Basic Microbiology, vol. 47, no. 5, pp. 406–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Ebrahimpour, R. N. Abd Rahman, D. H. Ean Ch'ng, M. Basri, and A. B. Salleh, “A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM,” BMC Biotechnology, vol. 8, p. 96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Sifour, T. I. Zaghloul, H. M. Saeed, M. M. Berekaa, and Y. R. Abdel-fattah, “Enhanced production of lipase by the thermophilic Geobacillus stearothermophilus strain-5 using statistical experimental designs,” New Biotechnology, vol. 27, no. 4, pp. 330–336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Breuil, D. B. Shindler, J. S. Sijher, and D. J. Kushner, “Stimulation of lipase production during bacterial growth on alkanes,” Journal of Bacteriology, vol. 133, no. 2, pp. 601–606, 1978. View at Google Scholar · View at Scopus
  61. S. Takaç and B. Marul, “Effects of lipidic carbon sources on the extracellular lipolytic activity of a newly isolated strain of Bacillus subtilis,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 9, pp. 1019–1025, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. H. A. El-Shafei and L. A. Rezkallah, “Production, purification and characterization of Bacillus lipase,” Microbiological Research, vol. 152, no. 2, pp. 199–208, 1997. View at Google Scholar · View at Scopus
  63. M. M. Berekaa, T. I. Zaghloul, Y. R. Abdel-Fattah, H. M. Saeed, and M. Sifour, “Production of a novel glycerol-inducible lipase from thermophilic Geobacillus stearothermophilus strain-5,” World Journal of Microbiology and Biotechnology, vol. 25, no. 2, pp. 287–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. N. G. Edwinoliver, K. Thirunavukarasu, R. B. Naidu, M. K. Gowthaman, T. N. Kambe, and N. R. Kamini, “Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis,” Bioresource Technology, vol. 101, no. 17, pp. 6791–6796, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. J. G. S. Mala, N. G. Edwinoliver, N. R. Kamini, and R. Puvanakrishnan, “Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594,” Journal of General and Applied Microbiology, vol. 53, no. 4, pp. 247–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. M. L. Rúa, C. Schmidt-Dannert, S. Wahl, A. Sprauer, and R. D. Schmid, “Thermoalkalophilic lipase of Bacillus thermocatenulatus: large-scale production, purification and properties: aggregation behaviour and its effect on activity,” Journal of Biotechnology, vol. 56, no. 2, pp. 89–102, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Imamura and S. Kitaura, “Purification and characterization of a monoacylglycerol lipase from the moderately thermophilic Bacillus sp. H-257,” Journal of Biochemistry, vol. 127, no. 3, pp. 419–425, 2000. View at Google Scholar · View at Scopus
  68. A. Ebrahimpour, R. N. Abd Rahman, M. Basri, and A. B. Salleh, “High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM,” Bioresource Technology, vol. 102, no. 13, pp. 6972–6981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Tayyab, N. Rashid, and M. Akhtar, “Isolation and identification of lipase producing thermophilic Geobacillus sp. SBS-4S: cloning and characterization of the lipase,” Journal of Bioscience and Bioengineering, vol. 111, no. 3, pp. 272–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. T. C. Leow, R. N. Abd Rahman, M. Basri, and A. B. Salleh, “A thermoalkaliphilic lipase of Geobacillus sp. T1,” Extremophiles, vol. 11, no. 3, pp. 527–535, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. N. A. Soliman, M. Knoll, Y. R. Abdel-Fattah, R. D. Schmid, and S. Lange, “Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt,” Process Biochemistry, vol. 42, no. 7, pp. 1090–1100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. J. P. Henley and A. Sadana, “Categorization of enzyme deactivations using a series-type mechanism,” Enzyme and Microbial Technology, vol. 7, no. 2, pp. 50–60, 1985. View at Publisher · View at Google Scholar · View at Scopus