Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 730789, 14 pages
http://dx.doi.org/10.1155/2013/730789
Review Article

Tight Junction Proteins and Oxidative Stress in Heavy Metals-Induced Nephrotoxicity

Physiology, Biophysics and Neurosciences Department, Center for Research and Advanced Studies, National Polytechnic Institute, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, 07360 Mexico, DF, Mexico

Received 20 December 2012; Accepted 27 March 2013

Academic Editor: Cheng-An J. Lin

Copyright © 2013 José L. Reyes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Arreola-Mendoza, L. M. Del Razo, O. Barbier et al., “Potable water pollution with heavy metals, arsenic, and fluorides and chronic kidney disease in infant population of Aguascalientes,” in Water Resources in Mexico, vol. 7, pp. 231–238, Springer, New York, NY, USA, 2011. View at Google Scholar
  2. F. J. Avelar Gonzalez, E. M. Ramirez Lopez, M. C. Martinez Saldaña, A. L. Guerrero Barrera, F. Jaramillo Juarez, and J. L. Reyes-Sanchez, “Water quality in the state of Aguascalientes and its effects on the population's health,” in Water Resources in Mexico, pp. 217–230, Springer, New York, NY, USA, 2011. View at Google Scholar
  3. O. Barbier, G. Jacquillet, M. Tauc, M. Cougnon, and P. Poujeol, “Effect of heavy metals on, and handling by, the kidney,” Nephron Physiology, vol. 99, no. 4, pp. p105–p110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Van Itallie and J. M. Anderson, “Claudins and epithelial paracellular transport,” Annual Review of Physiology, vol. 68, pp. 403–429, 2006. View at Publisher · View at Google Scholar
  5. C. Will, M. Fromm, and D. Müller, “Claudin tight junction proteins: novel aspects in paracellular transport,” Peritoneal Dialysis International, vol. 28, no. 6, pp. 577–584, 2008. View at Google Scholar
  6. T. Nakanishi, A. Fukushi, M. Sato et al., “Functional characterization of apical transporters expressed in rat proximal tubular cells (PTCs) in primary culture,” Molecular Pharmaceutics, vol. 8, no. 6, pp. 2142–2150, 2011. View at Google Scholar
  7. V. Vallon and S. C. Thomson, “Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney,” Annual Review of Physiology, vol. 74, pp. 351–375, 2012. View at Google Scholar
  8. C. J. Bailey, “Renal glucose reabsorption inhibitors to treat diabetes,” Trends in Pharmacological Sciences, vol. 32, no. 2, pp. 63–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Gonzalez-Mariscal, M. C. Namorado, D. Martin et al., “Tight junction proteins ZO-1, ZO-2, and occludin along isolated renal tubules,” Kidney International, vol. 57, no. 6, pp. 2386–2402, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Reyes, F. Roch-Ramel, and K. Besseghir, “Net sodium and water movements in the newborn rabbit collecting tubule: lack of modifications by indomethacin,” Biology of the Neonate, vol. 51, no. 4, pp. 212–216, 1987. View at Google Scholar · View at Scopus
  11. J. L. Reyes, M. Lamas, D. Martin et al., “The renal segmental distribution of claudins changes with development,” Kidney International, vol. 62, no. 2, pp. 476–487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Amasheh, N. Meiri, A. H. Gitter et al., “Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells,” Journal of Cell Science, vol. 115, no. 24, pp. 4969–4976, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Rosenthal, S. Milatz, S. M. Krug et al., “Claudin-2, a component of the tight junction, forms a paracellular water channel,” Journal of Cell Science, vol. 123, no. 11, pp. 1913–1921, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Furuse, K. Furuse, H. Sasaki, and S. Tsukita, “Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells,” Journal of Cell Biology, vol. 153, no. 2, pp. 263–272, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. A. S. L. Yu, A. H. Enck, W. I. Lencer, and E. E. Schneeberger, “Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 17350–17359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Y. Li, C. L. Huey, and A. S. L. Yu, “Expression of claudin-7 and -8 along the mouse nephron,” The American Journal of Physiology, vol. 286, no. 6, pp. F1063–F1071, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Gonzalez-Mariscal, M. Del Carmen Namorado, D. Martin, G. Sierra, and J. L. Reyes, “The tight junction proteins claudin-7 and -8 display a different subcellular localization at Henle's loops and collecting ducts of rabbit kidney,” Nephrology Dialysis Transplantation, vol. 21, no. 9, pp. 2391–2398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Blanchard, X. Jeunemaitre, P. Coudol et al., “Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle,” Kidney International, vol. 59, no. 6, pp. 2206–2215, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Krause, L. Winkler, S. L. Mueller, R. F. Haseloff, J. Piontek, and I. E. Blasig, “Structure and function of claudins,” Biochimica et Biophysica Acta, vol. 1778, no. 3, pp. 631–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Hou, “Lecture: new light on the role of claudins in the kidney,” Organogenesis, vol. 8, no. 1, pp. 1–9, 2012. View at Google Scholar
  21. J. Hou, M. Rajagopal, and A. S. Yu, “Claudins and the kidney,” Annual Review of Physiology, vol. 75, pp. 479–501, 2012. View at Google Scholar
  22. M. D. Garrick, K. G. Dolan, C. Horbinski et al., “DMT1: a mammalian transporter for multiple metals,” BioMetals, vol. 16, no. 1, pp. 41–54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Sabolić, D. Breljak, M. Škarica, and C. M. Herak-Kramberger, “Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs,” BioMetals, vol. 23, no. 5, pp. 897–926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. A. Fowler, “Monitoring of human populations for early markers of cadmium toxicity: a review,” Toxicology and Applied Pharmacology, vol. 238, no. 3, pp. 294–300, 2009. View at Google Scholar
  25. R. B. Klassen, K. Crenshaw, R. Kozyraki et al., “Megalin mediates renal uptake of heavy metal metallothionein complexes,” The American Journal of Physiology, vol. 287, no. 3, pp. F393–F403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Barbier, G. Jacquillet, M. Taue, P. Poujeol, and M. Cougnon, “Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo,” The American Journal of Physiology, vol. 287, no. 5, pp. F1067–F1075, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. L. J. Stinson, A. J. Darmon, L. Dagnino, and S. J. A. D'Souza, “Delayed apoptosis post-cadmium injury in renal proximal tubule epithelial cells,” The American Journal of Nephrology, vol. 23, no. 1, pp. 27–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Jacquillet, O. Barbier, I. Rubera et al., “Cadmium causes delayed effects on renal function in the offspring of cadmium-contaminated pregnant female rats,” The American Journal of Physiology, vol. 293, no. 5, pp. F1450–F1460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Y. Chan and O. M. Rennert, “Cadmium nephropathy,” Annals of Clinical & Laboratory Science, vol. 11, no. 3, pp. 229–238, 1981. View at Google Scholar
  30. J. Huff, R. M. Lunn, M. P. Waalkes, L. Tomatis, and P. F. Infante, “Cadmium-induced cancers in animals and in humans,” International Journal of Occupational and Environmental Health, vol. 13, no. 2, pp. 202–212, 2007. View at Google Scholar · View at Scopus
  31. A. E. Ades and G. Kazantzis, “Lung cancer in a non-ferrous smelter: the role of cadmium,” British Journal of Industrial Medicine, vol. 45, no. 7, pp. 435–442, 1988. View at Google Scholar · View at Scopus
  32. D. J. Hazen-Martin, J. H. Todd, M. A. Sens et al., “Electrical and freeze-fracture analysis of the effects of ionic cadmium on cell membranes of human proximal tubule cells,” Environmental Health Perspectives, vol. 101, no. 6, pp. 510–516, 1993. View at Google Scholar · View at Scopus
  33. G. Jacquillet, O. Barbier, M. Cougnon et al., “Zinc protects renal function during cadmium intoxication in the rat,” The American Journal of Physiology, vol. 290, no. 1, pp. F127–F137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. W. C. Prozialeck, D. R. Wellington, and P. C. Lamar, “Comparison of the cytotoxic effects of cadmium chloride and cadmium-metallothionein in LLC-PK1 cells,” Life Sciences, vol. 53, no. 20, pp. PL337–PL342, 1993. View at Google Scholar · View at Scopus
  35. L. B. Zimmerhackl, F. Momm, G. Wiegele, and M. Brandis, “Cadmium is more toxic to LLC-PK1 cells than to MDCK cells acting on the cadherin-catenin complex,” The American Journal of Physiology, vol. 275, no. 1, pp. F143–F153, 1998. View at Google Scholar · View at Scopus
  36. A. Perez, M. Ramirez-Ramos, C. Calleja et al., “Beneficial effect of retinoic acid on the outcome of experimental acute renal failure,” Nephrology Dialysis Transplantation, vol. 19, no. 10, pp. 2464–2471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Arreola-Mendoza, J. L. Reyes, E. Melendez et al., “Alpha-tocopherol protects against the renal damage caused by potassium dichromate,” Toxicology, vol. 218, no. 2-3, pp. 237–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Arreola-Mendoza, L. M. Del Razo, M. E. Mendoza-Garrido et al., “The protective effect of alpha-tocopherol against dichromate-induced renal tight junction damage is mediated via ERK1/2,” Toxicology Letters, vol. 191, no. 2-3, pp. 279–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Basuroy, P. Sheth, D. Kuppuswamy, S. Balasubramanian, R. M. Ray, and R. K. Rao, “Expression of kinase-inactive c-Src delays oxidative stress-induced disassembly and accelerates calcium-mediated reassembly of tight junctions in the Caco-2 cell monolayer,” Journal of Biological Chemistry, vol. 278, no. 14, pp. 11916–11924, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. L. G. Navarro-Moreno, M. A. Quintanar-Escorza, S. González et al., “Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells,” Toxicology in Vitro, vol. 23, no. 7, pp. 1298–1304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. C. V. Nolan and Z. A. Shaikh, “Lead nephrotoxicity and associated disorders: biochemical mechanisms,” Toxicology, vol. 73, no. 2, pp. 127–146, 1992. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Hu, “A 50-year follow-up of childhood plumbism: hypertension, renal function, and hemoglobin levels among survivors,” The American Journal of Diseases of Children, vol. 145, no. 6, pp. 681–687, 1991. View at Google Scholar · View at Scopus
  43. E. B. Ekong, B. G. Jaar, and V. M. Weaver, “Lead-related nephrotoxicity: a review of the epidemiologic evidence,” Kidney International, vol. 70, no. 12, pp. 2074–2084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Zhang, H. Hu, B. N. Sanchez et al., “Association between prenatal lead exposure and blood pressure in children,” Environmental Health Perspectives, vol. 120, no. 3, pp. 445–450, 2012. View at Google Scholar
  45. L. Wang, H. Wang, M. Hu, J. Cao, D. Chen, and Z. Liu, “Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead,” Archives of Toxicology, vol. 83, no. 5, pp. 417–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. H. M. Korashy and A. O. S. El-Kadi, “NF-κB and AP-1 are key signaling pathways in the modulation of NAD(P)H: quinone oxidoreductase 1 gene by mercury, lead, and copper,” Journal of Biochemical and Molecular Toxicology, vol. 22, no. 4, pp. 274–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. N. D. Vaziri, “Mechanisms of lead-induced hypertension and cardiovascular disease,” The American Journal of Physiology, vol. 295, no. 2, pp. H454–H465, 2008. View at Google Scholar
  48. W. M. Bennett, “Lead nephropathy,” Kidney International, vol. 28, no. 2, pp. 212–220, 1985. View at Google Scholar
  49. J. L. Lin, C. C. Yu, D. T. Lin-Tan, and H. H. Ho, “Lead chelation therapy and urate excretion in patients with chronic renal diseases and gout,” Kidney International, vol. 60, no. 1, pp. 266–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Y. Tao, Q. L. Wang, J. L. Yuan, L. Shen, and C. H. Liu, “Effects of vitamin e on mercuric chloride-induced renal interstitial fibrosis in rats and the antioxidative mechanism,” Journal of Chinese Integrative Medicine, vol. 9, no. 2, pp. 201–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Y. Zhao and S. J. Wang, “Experimental study of proteinuria caused by chronic exposure to mercury,” Biomedical and Environmental Sciences, vol. 1, no. 3, pp. 235–246, 1988. View at Google Scholar
  52. W. Coers, J. T. W. M. Vos, P. H. Van der Meide, M. L. C. Van der Horst, S. Huitema, and J. J. Weening, “Interferon-gamma (IFN-γ) and IL-4 expressed during mercury-induced membranous nephropathy are toxic for cultured podocytes,” Clinical and Experimental Immunology, vol. 102, no. 2, pp. 297–307, 1995. View at Google Scholar · View at Scopus
  53. G. Girardi and M. M. Elias, “Verapamil protection against mercuric chloride-induced renal glomerular injury in rats,” Toxicology and Applied Pharmacology, vol. 152, no. 2, pp. 360–365, 1998. View at Google Scholar
  54. G. M. Kyle, R. Luthra, and J. V. Bruckner, “Assessment of functional, morphological, and enzymatic tests for acute nephrotoxicity induced by mercuric chloride,” Journal of Toxicology and Environmental Health, vol. 12, no. 1, pp. 99–117, 1983. View at Google Scholar · View at Scopus
  55. F. Huwez, A. Pall, D. Lyons, and M. J. Stewart, “Acute renal failure after overdose of colloidal bismuth subcitrate,” The Lancet, vol. 340, no. 8830, p. 1298, 1992. View at Google Scholar · View at Scopus
  56. B. T. Leussink, S. V. Litvinov, E. de Heer et al., “Loss of homotypic epithelial cell adhesion by selective N-cadherin displacement in bismuth nephrotoxicity,” Toxicology and Applied Pharmacology, vol. 175, no. 1, pp. 54–59, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. B. T. Leussink, H. J. Baelde, T. M. Broekhuizen-van den Berg et al., “Renal epithelial gene expression profile and bismuth-induced resistance against cisplatin nephrotoxicity,” Human and Experimental Toxicology, vol. 22, no. 10, pp. 535–540, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. K. S. Kasprzak, F. W. Sunderman Jr., and K. Salnikow, “Nickel carcinogenesis,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 533, no. 1-2, pp. 67–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Vyskocil, C. Viau, and M. Cizkova, “Chronic nephrotoxicity of soluble nickel in rats,” Human and Experimental Toxicology, vol. 13, no. 10, pp. 689–693, 1994. View at Google Scholar · View at Scopus
  60. E. Horak and F. W. Sunderman Jr., “Nephrotoxicity of nickel carbonyl in rats,” Annals of Clinical & Laboratory Science, vol. 10, no. 5, pp. 425–431, 1980. View at Google Scholar
  61. S. K. Tandon, S. Khandelwal, A. K. Mathur, and M. Ashquin, “Preventive effects of nickel on cadmium hepatotoxicity and nephrotoxicity,” Annals of Clinical and Laboratory Science, vol. 14, no. 5, pp. 390–396, 1984. View at Google Scholar · View at Scopus
  62. I. Sabolic, “Common mechanisms in nephropathy induced by toxic metals,” Nephron Physiology, vol. 104, no. 3, pp. 107–114, 2006. View at Google Scholar
  63. A. K. Patlolla, C. Barnes, C. Yedjou, V. R. Velma, and P. B. Tchounwou, “Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in sprague-dawley rats,” Environmental Toxicology, vol. 24, no. 1, pp. 66–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. L. Huang, C. Y. Chen, J. Y. Sheu, I. C. Chuang, J. H. Pan, and T. H. Lin, “Lipid peroxidation in workers exposed to hexavalent chromium,” Journal of Toxicology and Environmental Health A, vol. 56, no. 4, pp. 235–247, 1999. View at Google Scholar · View at Scopus
  65. J. Pedraza-Chaverrí, D. Barrera, O. N. Medina-Campos et al., “Time course study of oxidative and nitrosative stress and antioxidant enzymes in K2Cr2O7-induced nephrotoxicity,” BMC Nephrology, vol. 6, article 4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Barrera, P. D. Maldonado, O. N. Medina-Campos, R. Hernández-Pando, M. E. Ibarra-Rubio, and J. Pedraza-Chaverri, “HO-1 induction attenuates renal damage oxidatives stress induced by K2Cr2O7,” Free Radical Biology and Medicine, vol. 34, no. 11, pp. 1390–1398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Pande and S. J. S. Flora, “Lead induced oxidative damage and its response to combined administration of α-lipoic acid and succimers in rats,” Toxicology, vol. 177, no. 2-3, pp. 187–196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Stacchiotti, F. Morandini, F. Bettoni et al., “Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead,” Toxicology, vol. 264, no. 3, pp. 215–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Stacchiotti, F. Ricci, R. Rezzani et al., “Tubular stress proteins and nitric oxide synthase expression in rat kidney exposed to mercuric chloride and melatonin,” Journal of Histochemistry and Cytochemistry, vol. 54, no. 10, pp. 1149–1157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Gong, F. Chen, X. Liu, X. Gong, J. Wang, and Y. Ma, “Protective effect of caffeic acid phenethyl ester against cadmium-induced renal damage in mice,” Journal of Toxicological Sciences, vol. 37, no. 2, pp. 415–425, 2012. View at Google Scholar
  71. T. N. Meyer, C. Schwesinger, J. Ye, B. M. Denker, and S. K. Nigam, “Reassembly of the tight junction after oxidative stress depends on tyrosine kinase activity,” Journal of Biological Chemistry, vol. 276, no. 25, pp. 22048–22055, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. W. Yu, S. Beaudry, H. Negoro et al., “H2O2 activates G protein, alpha 12 to disrupt the junctional complex and enhance ischemia reperfusion injury,” Proceedings of the National Academy of Sciences of the USA, vol. 109, no. 17, pp. 6680–6685, 2012. View at Google Scholar
  73. L. Y. Yang, K. H. Wu, W. T. Chiu, S. H. Wang, and C. M. Shih, “The cadmium-induced death of mesangial cells results in nephrotoxicity,” Autophagy, vol. 5, no. 4, pp. 571–572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Faurskov and H. F. Bjerregaard, “Effect of cadmium on active ion transport and cytotoxicity in cultured renal epithelial cells (A6),” Toxicology in Vitro, vol. 11, no. 5, pp. 717–722, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Hirano, X. Sun, C. A. DeGuzman et al., “p38 MAPK/HSP25 signaling mediates cadmium-induced contraction of mesangial cells and renal glomeruli,” The American Journal of Physiology, vol. 288, no. 6, pp. F1133–F1143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Dokladny, W. Wharton, T. Y. Ma, and P. L. Moseley, “Lack of cross-tolerance following heat and cadmium exposure in functional MDCK monolayers,” Journal of Applied Toxicology, vol. 28, no. 7, pp. 885–894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. P. C. Dartsch, S. Hildenbrand, R. Kimmel, and F. W. Schmahl, “Investigations on the nephrotoxicity and hepatotoxicity of trivalent and hexavalent chromium compounds,” International Archives of Occupational and Environmental Health, vol. 71, pp. S40–S45, 1998. View at Google Scholar · View at Scopus
  78. R. C. Murthy, D. K. Saxena, S. K. Gupta, and S. V. Chandra, “Ultrastructural observations in testicular tissue of chromium-treated rats,” Reproductive Toxicology, vol. 5, no. 5, pp. 443–447, 1991. View at Google Scholar · View at Scopus
  79. J. R. Mackert Jr., “Dental amalgam and mercury,” Journal of the American Dental Association, vol. 122, no. 8, pp. 54–61, 1991. View at Google Scholar
  80. R. K. Zalups, “Molecular interactions with mercury in the kidney,” Pharmacological Reviews, vol. 52, no. 1, pp. 113–143, 2000. View at Google Scholar
  81. J. D. Kawedia, M. Jiang, A. Kulkarni et al., “The protein kinase A pathway contributes to Hg2+-induced alterations in phosphorylation and subcellular distribution of occludin associated with increased tight junction permeability of salivary epithelial cell monolayers,” Journal of Pharmacology and Experimental Therapeutics, vol. 326, no. 3, pp. 829–837, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Bohme, M. Diener, P. Mestres, and W. Rummel, “Direct and indirect actions of HgCl2 and methyl mercury chloride on permeability and chloride secretion across the rat colonic mucosa,” Toxicology and Applied Pharmacology, vol. 114, no. 2, pp. 285–294, 1992. View at Publisher · View at Google Scholar · View at Scopus
  83. Q. Wang, W. Luo, W. Zheng et al., “Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development,” Toxicology and Applied Pharmacology, vol. 219, no. 1, pp. 33–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. L. Z. Shi and W. Zheng, “Early lead exposure increases the leakage of the blood-cerebrospinal fluid barrier, in vitro,” Human and Experimental Toxicology, vol. 26, no. 3, pp. 159–167, 2007. View at Google Scholar
  85. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 4th edition, 2007.
  86. R. Singh, B. Kaur, I. Kalina et al., “Effects of environmental air pollution on endogenous oxidative DNA damage in humans,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 620, no. 1-2, pp. 71–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Therond, “Oxidative stress and damages to biomolecules (lipids, proteins, DNA),” Annales Pharmaceutiques Francaises, vol. 64, no. 6, pp. 383–389, 2006. View at Google Scholar · View at Scopus
  88. E. R. Stadtman and C. N. Oliver, “Metal-catalyzed oxidation of proteins. Physiological consequences,” Journal of Biological Chemistry, vol. 266, no. 4, pp. 2005–2008, 1991. View at Google Scholar
  89. B. S. Berlett and E. R. Stadtman, “Protein oxidation in aging, disease, and oxidative stress,” Journal of Biological Chemistry, vol. 272, no. 33, pp. 20313–20316, 1997. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Yu, Y. Ge, Y. Wang et al., “A fused selenium-containing protein with both GPx and SOD activities,” Biochemical and Biophysical Research Communications, vol. 358, no. 3, pp. 873–878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. C. L. Edelstein, H. Ling, and R. W. Schrier, “The nature of renal cell injury,” Kidney International, vol. 51, no. 5, pp. 1341–1351, 1997. View at Google Scholar · View at Scopus
  92. F. Tao, B. Gonzalez-Flecha, and L. Kobzik, “Reactive oxygen species in pulmonary inflammation by ambient particulates,” Free Radical Biology and Medicine, vol. 35, no. 4, pp. 327–340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. A. M. Knaapen, P. J. A. Borm, C. Albrecht, and R. P. F. Schins, “Inhaled particles and lung cancer. Part A: mechanisms,” International Journal of Cancer, vol. 109, no. 6, pp. 799–809, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. W. Qiang, J. M. Cahill, J. Liu et al., “Activation of transcription factor Nrf-2 and its downstream targets in response to Moloney murine leukemia virus ts1-induced thiol depletion and oxidative stress in astrocytes,” Journal of Virology, vol. 78, no. 21, pp. 11926–11938, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. E. Dounousi, E. Papavasiliou, A. Makedou et al., “Oxidative stress is progressively enhanced with advancing stages of CKD,” The American Journal of Kidney Diseases, vol. 48, no. 5, pp. 752–760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Himmelfarb, E. McMonagle, S. Freedman et al., “Oxidative stress is increased in critically ill patients with acute renal failure,” Journal of the American Society of Nephrology, vol. 15, no. 9, pp. 2449–2456, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Himmelfarb and E. McMonagle, “Albumin is the major plasma protein target of oxidant stress in uremia,” Kidney International, vol. 60, no. 1, pp. 358–363, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Himmelfarb, E. McMonagle, and E. McMenamin, “Plasma protein thiol oxidation and carbonyl formation in chronic renal failure,” Kidney International, vol. 58, no. 6, pp. 2571–2578, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. D. M. Small, J. S. Coombes, N. Bennett, D. W. Johnson, and G. C. Gobe, “Oxidative stress, anti-oxidant therapies and chronic kidney disease,” Nephrology, vol. 17, no. 4, pp. 311–321, 2012. View at Google Scholar
  100. R. Mastrocola, F. Restivo, I. Vercellinatto et al., “Oxidative and nitrosative stress in brain mitochondria of diabetic rats,” Journal of Endocrinology, vol. 187, no. 1, pp. 37–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. G. Gobe and D. Crane, “Mitochondria, reactive oxygen species and cadmium toxicity in the kidney,” Toxicology Letters, vol. 198, no. 1, pp. 49–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Molina-Jijon, E. Tapia, C. Zazueta et al., “Curcumin prevents Cr(VI)-induced renal oxidant damage by a mitochondrial pathway,” Free Radical Biology and Medicine, vol. 51, no. 8, pp. 1543–1557, 2011. View at Google Scholar
  103. W. Tang and Z. A. Shaikh, “Renal cortical mitochondrial dysfunction upon cadmium metallothionein administration to sprague-dawley rats,” Journal of Toxicology and Environmental Health A, vol. 63, no. 3, pp. 221–235, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. T. W. Clarkson, “The toxicology of mercury,” Critical Reviews in Clinical Laboratory Sciences, vol. 34, no. 4, pp. 369–403, 1997. View at Google Scholar
  105. N. Shimojo, Y. Kumagai, and J. Nagafune, “Difference between kidney and liver in decreased manganese superoxide dismutase activity caused by exposure of mice to mercuric chloride,” Archives of Toxicology, vol. 76, no. 7, pp. 383–387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Nava, F. Romero, Y. Quiroz, G. Parra, L. Bonet, and B. Rodríguez-Iturbe, “Melatonin attenuates acute renal failure and oxidative stress induced by mercuric chloride in rats,” The American Journal of Physiology, vol. 279, no. 5, pp. F910–F918, 2000. View at Google Scholar · View at Scopus
  107. M. Mahboob, K. F. Shireen, A. Atkinson, and A. T. Khan, “Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury,” Journal of Environmental Science and Health B, vol. 36, no. 5, pp. 687–697, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. G. L. Diamond and R. K. Zalups, “Understanding renal toxicity of heavy metals,” Toxicologic Pathology, vol. 26, no. 1, pp. 92–103, 1998. View at Google Scholar
  109. J. B. Nielsen, H. R. Andersen, O. Andersen, and H. Starklint, “Dose and time relations in Hg++-induced tubular necrosis and regeneration,” Environmental Health Perspectives, vol. 102, no. 3, pp. 317–320, 1994. View at Google Scholar · View at Scopus
  110. K. Kostial, D. Kello, and S. Jugo, “Influence of age on metal metabolism and toxicity,” Environmental Health Perspectives, vol. 25, pp. 81–86, 1978. View at Google Scholar · View at Scopus
  111. J. B. Nielsen and O. Andersen, “Disposition and retention of mercuric chloride in mice after oral and parenteral administration,” Journal of Toxicology and Environmental Health, vol. 30, no. 3, pp. 167–180, 1990. View at Google Scholar · View at Scopus
  112. E. M. McDowell, R. B. Nagle, and R. C. Zalme, “Studies on the pathophysiology of acute renal failure. I. Correlation of ultrastructure and function in the proximal tubule of the rat following administration of mercuric chloride,” Virchows Archiv Abteilung B Cell Pathology, vol. 22, no. 3, pp. 173–196, 1976. View at Google Scholar · View at Scopus
  113. G. Girardi and M. M. Elias, “Mercuric chloride effects on rat renal redox enzymes activities: SOD protection,” Free Radical Biology and Medicine, vol. 18, no. 1, pp. 61–66, 1995. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Cabral, D. Dieme, A. Verdin et al., “Low-level environmental exposure to lead and renal adverse effects: a cross-sectional study in the population of children bordering the Mbeubeuss landfill near Dakar, Senegal,” Human and Experimental Toxicology, 2012. View at Publisher · View at Google Scholar