Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 735981, 10 pages
http://dx.doi.org/10.1155/2013/735981
Research Article

Magnesium Coated Bioresorbable Phosphate Glass Fibres: Investigation of the Interface between Fibre and Polyester Matrices

Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK

Received 19 April 2013; Revised 22 July 2013; Accepted 22 July 2013

Academic Editor: Zbigniew Gugala

Copyright © 2013 Xiaoling Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Shikinami and M. Okuno, “Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA)—part I. Basic characteristics,” Biomaterials, vol. 20, no. 9, pp. 859–877, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Ahmed, I. A. Jones, A. J. Parsons et al., “Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture,” Journal of Materials Science, vol. 22, no. 8, pp. 1825–1834, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. R. M. Felfel, I. Ahmed, A. J. Parsons, G. S. Walker, and C. D. Rudd, “In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 7, pp. 1462–1472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Ahmed, P. S. Cronin, E. A. Neel, A. J. Parsons, J. C. Knowles, and C. D. Rudd, “Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite,” Journal of Biomedical Materials Research Part B, vol. 89, no. 1, pp. 18–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. Parsons, I. Ahmed, P. Haque et al., “Phosphate glass fibre composites for bone repair,” Journal of Bionic Engineering, vol. 6, no. 4, pp. 318–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Lin, G. Ehlert, and H. A. Sodano, “Increased interface strength in carbon fiber composites through a ZnO nanowire interphase,” Advanced Functional Materials, vol. 19, no. 16, pp. 2654–2660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. T. DiBenedetto, “Tailoring of interfaces in glass fiber reinforced polymer composites: a review,” Materials Science and Engineering A, vol. 302, no. 1, pp. 74–82, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Varga, N. Miskolczi, L. Bartha, and G. Lipóczi, “Improving the mechanical properties of glass-fibre-reinforced polyester composites by modification of fibre surface,” Materials and Design, vol. 31, no. 1, pp. 185–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. F. Feller and Y. Grohens, “Coupling ability of silane grafted poly(propene) at glass fibers/poly(propene) interface,” Composites Part A, vol. 35, no. 1, pp. 1–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Cech, R. Prikryl, R. Balkova, A. Grycova, and J. Vanek, “Plasma surface treatment and modification of glass fibers,” Composites Part A, vol. 33, no. 10, pp. 1367–1372, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. K.-B. Lim and D.-C. Lee, “Surface modification of glass and glass fibres by plasma surface treatment,” Surface and Interface Analysis, vol. 36, no. 3, pp. 254–258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. D. J. Marks and F. R. Jones, “Plasma polymerised coatings for engineered interfaces for enhanced composite performance,” Composites Part A, vol. 33, no. 10, pp. 1293–1302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Çökeliler, S. Erkut, J. Zemek, H. Biederman, and M. Mutlu, “Modification of glass fibers to improve reinforcement: a plasma polymerization technique,” Dental Materials, vol. 23, no. 3, pp. 335–342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Sever, M. Sarikanat, Y. Seki, H. A. Gülec, M. Mutlu, and I. H. Tavman, “Improvement of interfacial adhesion of glass fiber/epoxy composite by using plasma polymerized glass fibers,” Journal of Adhesion, vol. 86, no. 9, pp. 913–936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Cech, R. Prikryl, R. Balkova, A. Grycova, and J. Vanek, “Plasma surface treatment and modification of glass fibers,” Composites Part A, vol. 33, no. 10, pp. 1367–1372, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Haque, I. A. Barker, A. Parsons et al., “Influence of compatibilizing agent molecular structure on the mechanical properties of phosphate glass fiber-reinforced PLA composites,” Journal of Polymer Science A, vol. 48, no. 14, pp. 3082–3094, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Ibnabddjalil, I.-H. Loh, C. C. Chu, N. Blumenthal, H. Alexander, and D. Turner, “Effect of surface plasma treatment on the chemical, physical, morphological, and mechanical properties of totally absorbable bone internal fixation devices,” Journal of Biomedical Materials Research, vol. 28, no. 3, pp. 289–301, 1994. View at Google Scholar · View at Scopus
  18. J. George, M. S. Sreekala, and S. Thomas, “A review on interface modification and characterization of natural fiber reinforced plastic composites,” Polymer Engineering and Science, vol. 41, no. 9, pp. 1471–1485, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Ruffino, V. Torrisi, G. Marletta, and M. G. Grimaldi, “Growth morphology of nanoscale sputter-deposited Au films on amorphous soft polymeric substrates,” Applied Physics A, vol. 103, no. 4, pp. 939–949, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. W. J. Lo, D. M. Grant, M. D. Ball, B. S. Welsh, S. M. Howdle, E. N. Antonov et al., “Physical, chemical, and biological characterization of pulsed laser deposited and plasma sputtered hydroxyapatite thin films on titanium alloy,” Journal of Biomedical Materials Research, vol. 50, pp. 536–545, 2000. View at Google Scholar
  21. F. Witte, “The history of biodegradable magnesium implants: a review,” Acta Biomaterialia, vol. 6, no. 5, pp. 1680–1692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Mehmet, F.W. Cansizoglu, I. Pei-Wang, and T. Karabacak, “Evolution of crystal orientation in obliquely deposited Mg nanorod arrays for hydrogen storage applications,” MRS Proceedings, vol. 1042, 2007. View at Google Scholar
  23. Y. K. Gautam, A. K. Chawla, V. Chawla, R. D. Agrawal, and R. Chandra, “Influence of sputtering gas on morphological and optical properties of magnesium films,” Journal of Materials Science and Technology, vol. 27, no. 1, pp. 51–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. H. Lee, I. Y. Bae, K. J. Kim, K. M. Moon, and T. Oki, “Formation mechanism of new corrosion resistance magnesium thin films by PVD method,” Surface and Coatings Technology, vol. 169-170, pp. 670–674, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Ahmed, A. J. Parsons, G. Palmer, J. C. Knowles, G. S. Walker, and C. D. Rudd, “Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite,” Acta Biomaterialia, vol. 4, no. 5, pp. 1307–1314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Kelly and W. R. Tyson, “Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum,” Journal of the Mechanics and Physics of Solids, vol. 13, no. 6, pp. 329–338, 1965. View at Google Scholar · View at Scopus
  27. D. Tripathi, T. Turton, F. Chen, and F. R. Jones, “A new method to normalize the effect of matrix properties on the value of interfacial shear strength obtained from the fragmentation test,” Journal of Materials Science, vol. 32, no. 18, pp. 4759–4765, 1997. View at Google Scholar · View at Scopus
  28. D. Tripathi, F. Chen, and F. R. Jones, “The effect of matrix yield strain on the data reduction technique of the single-filament fragmentation test,” Composites Part A, vol. 27, no. 9, pp. 709–715, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Störmer, C. Blawert, H. Hagen, V. Heitmann, and W. Dietzel, “Structure and corrosion of magnetron sputtered pure Mg films on silicon substrates,” Plasma Processes and Polymers, vol. 4, no. 1, pp. S557–S561, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Chawla, R. Jayaganthan, and R. Chandra, “Structural characterizations of magnetron sputtered nanocrystalline TiN thin films,” Materials Characterization, vol. 59, no. 8, pp. 1015–1020, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, William Andrew Publishing/Noyes, 1998.
  32. A. A. Griffith, “Phenomena of rupture and flow in solids,” ASM Transactions Quarterly, vol. 61, pp. 871–906, 1968. View at Google Scholar
  33. S. Shaharuddin, Manufacture and Characterisation of Novel Resorbable Phosphate Based Glass Fibres for Biomedical Applications, University of Nottingham, Nottingham, UK, 2012.
  34. S. F. Hassan and M. Gupta, “Development of high performance magnesium nanocomposites using solidification processing route,” Materials Science and Technology, vol. 20, no. 11, pp. 1383–1388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. E. Cuthrell, D. M. Mattox, C. R. Peeples, P. L. Dreike, and K. P. Lamppa, “Residual-stress anisotropy, stress-control, and resistivity in post cathode magnetron sputter deposited molybdenum films,” Journal of Vacuum Science & Technology A, no. 6, pp. 2914–2920, 1988. View at Google Scholar
  36. A. N. Netravali, R. B. Henstenburg, S. L. Phoenix, and P. Schwartz, “Interfacial shear strength studies using the single-filament-composite test—I: experiments on graphite fibers in epoxy,” Polymer Composites, vol. 10, no. 4, pp. 226–241, 1989. View at Google Scholar · View at Scopus
  37. U. Galan, G. J. Ehlert, Y. R. Lin, and H. A. Sodano, “Effect of morphology of ZnO nanowire arrays on interfacial shear strength in carbon fiber composites,” Functional Metal-Oxide Nanostructures, vol. 1174, pp. 89–94, 2009. View at Google Scholar