Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 751913, 9 pages
http://dx.doi.org/10.1155/2013/751913
Review Article

Fullerenols as a New Therapeutic Approach in Nanomedicine

1Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
2Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland

Received 27 July 2013; Accepted 18 September 2013

Academic Editor: Antoni Camins

Copyright © 2013 Jacek Grebowski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Markovic and V. Trajkovic, “Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60),” Biomaterials, vol. 29, no. 26, pp. 3561–3573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Vileno, A. Sienkiewicz, M. Lekka, A. J. Kulik, and L. Forró, “In vitro assay of singlet oxygen generation in the presence of water-soluble derivatives of C60,” Carbon, vol. 42, no. 5-6, pp. 1195–1198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Xiao, H. Aoshima, Y. Saitoh, and N. Miwa, “Highly hydroxylated fullerene localizes at the cytoskeleton and inhibits oxidative stress in adipocytes and a subcutaneous adipose-tissue equivalent,” Free Radical Biology and Medicine, vol. 51, no. 7, pp. 1376–1389, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Xiao, H. Takada, K. Maeda, M. Haramoto, and N. Miwa, “Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes,” Biomedicine & Pharmacotherapy, vol. 59, no. 7, pp. 351–358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Chen, K. Ma, G. Wang, X. Zhao, and A. Tang, “Structures and stabilities of C60(OH)4 and C60(OH)6 fullerenols,” Journal of Molecular Structure, vol. 498, no. 1, pp. 227–232, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Y. Chiang, J. B. Bhonsle, L. Wang, S. F. Shu, T. M. Chang, and J. R. Hwu, “Efficient one-flask synthesis of water-soluble [60]fullerenols,” Tetrahedron, vol. 52, no. 14, pp. 4963–4972, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, and T. Oshima, “Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups,” ACS Nano, vol. 2, no. 2, pp. 327–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Zhang, Y. Liu, D. Liang, L. Gan, and Y. Li, “Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C60(OH)8,” Angewandte Chemie, vol. 49, no. 31, pp. 5293–5295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K. D. Pickering and M. R. Wiesner, “Fullerol-sensitized production of reactive oxygen species in aqueous solution,” Environmental Science & Technology, vol. 39, no. 5, pp. 1359–1365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Y. Chiang, F.-J. Lu, and J.-T. Lin, “Free radical scavenging activity of water-soluble fullerenols,” Journal of the Chemical Society, Chemical Communications, no. 12, pp. 1283–1284, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. G. D. Nielsen, M. Roursgaard, K. A. Jensen, S. S. Poulsen, and S. T. Larsen, “In vivo biology and toxicology of fullerenes and their derivatives,” Basic and Clinical Pharmacology & Toxicology, vol. 103, no. 3, pp. 197–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. M. Mirkov, A. N. Djordjevic, N. L. Andric et al., “Nitric oxide-scavenging activity of polyhydroxylated fullerenol, C60(OH)24,” Nitric Oxide, vol. 11, no. 2, pp. 201–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Grebowski, A. Krokosz, and M. Puchala, “Fullerenol C60(OH)36 could associate to band 3 protein of human erythrocyte membranes,” Biochimica et Biophysica Acta, vol. 1828, no. 9, pp. 2007–2014, 2013. View at Google Scholar
  14. P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton, and K. F. Preston, “Radical reactions of C60,” Science, vol. 254, no. 5035, pp. 1183–1185, 1991. View at Google Scholar · View at Scopus
  15. L. Xiao, H. Takada, X. H. Gan, and N. Miwa, “The water-soluble fullerene derivative “Radical Sponge” exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes,” Bioorganic & Medicinal Chemistry Letters, vol. 16, no. 6, pp. 1590–1595, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Krokosz, “Fullerenes in biology,” Postepy Biochemii, vol. 53, no. 1, pp. 91–96, 2007. View at Google Scholar · View at Scopus
  17. A. Djordjevic, J. M. Canadanovic-Brunet, M. Vojinovic-Miloradov, and G. Bogdanovic, “Antioxidant properties and hypothetic radical mechanism of fullerenol C60(OH)24,” Oxidation Communications, vol. 27, no. 4, pp. 806–812, 2004. View at Google Scholar · View at Scopus
  18. H.-S. Lai, Y. Chen, W.-J. Chen, K.-J. Chang, and L.-Y. Chiang, “Free radical scavenging activity of fullerenol on grafts after small bowel transplantation in dogs,” Transplantation Proceedings, vol. 32, no. 6, pp. 1272–1274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. H.-S. Lai, W.-J. Chen, and L.-Y. Chiang, “Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs,” World Journal of Surgery, vol. 24, no. 4, pp. 450–454, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-Y. Xu, Y.-Y. Su, J.-S. Cheng et al., “Protective effects of fullerenol on carbon tetrachloride-induced acute hepatotoxicity and nephrotoxicity in rats,” Carbon, vol. 48, no. 5, pp. 1388–1396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-J. Yin, F. Lao, P. P. Fu et al., “The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials,” Biomaterials, vol. 30, no. 4, pp. 611–621, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Kato, H. Aoshima, Y. Saitoh, and N. Miwa, “Highly hydroxylated or γ-cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and β-carotene bleaching assay,” Bioorganic & Medicinal Chemistry Letters, vol. 19, no. 18, pp. 5293–5296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Krokosz and Z. Szweda-Lewandowska, “Changes in the activity of acetylcholinesterase and Na,K-ATPase in human erythrocytes irradiated with X-rays,” Cellular and Molecular Biology Letters, vol. 10, no. 3, pp. 471–478, 2005. View at Google Scholar · View at Scopus
  25. A. Krokosz, R. Koziczak, M. Gonciarz, and Z. Szweda-Lewandowska, “Study of the effect of dose-rate on radiation-induced damage to human erythrocytes,” Radiation Physics and Chemistry, vol. 75, no. 1, pp. 98–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Komorowska, A. Krokosz, and Z. Szweda-Lewandowska, “Radiation damage to human erythrocytes: influence of the composition of medium,” Radiation Physics and Chemistry, vol. 76, no. 10, pp. 1587–1593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Szweda-Lewandowska, A. Krokosz, M. Gonciarz, W. Zajeczkowska, and M. Puchała, “Damage to human erythrocytes by radiation-generated HO radicals: molecular changes in erythrocyte membranes,” Free Radical Research, vol. 37, no. 10, pp. 1137–1143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Grębowski and A. Krokosz, “Fullerenes in radiobiology,” Postepy Biochemii, vol. 56, no. 4, pp. 456–462, 2010. View at Google Scholar · View at Scopus
  29. I. Icević, V. Bogdanović, D. Zikić, S. Solajić, G. Bogdanović, and A. Djordjević, “The influence of fullerenol on cell number, cell area, and colony forming unit ability in irradiated human eritroleukemic cell line,” Hemijska Industrija, vol. 61, no. 3, pp. 167–169, 2007. View at Publisher · View at Google Scholar
  30. V. Bogdanović, K. Stankov, I. Icević et al., “Fullerenol C60(OH)24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line,” Journal of Radiation Research, vol. 49, no. 3, pp. 321–327, 2008. View at Publisher · View at Google Scholar
  31. S. Trajkovic, S. Dobric, A. Djordjevic, V. Dragojevic-Simic, and Z. Milovanovic, “Radioprotective efficiency of fullerenol in irradiated mice,” Materials Science Forum, vol. 494, pp. 549–554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Trajković, S. Dobrić, V. Jaćević, V. Dragojević-Simić, Z. Milovanović, and A. Dordević, “Tissue-protective effects of fullerenol C60(OH)24 and amifostine in irradiated rats,” Colloids and Surfaces B, vol. 58, no. 1, pp. 39–43, 2007. View at Publisher · View at Google Scholar
  33. C. Bourgier, A. Levy, M. C. Vozenin, and E. Deutsch, “Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics?” Cancer and Metastasis Reviews, no. 3-4, pp. 699–712, 2012. View at Google Scholar
  34. D. Citrin, A. P. Cotrim, F. Hyodo, B. J. Baum, M. C. Krishna, and J. B. Mitchell, “Radioprotectors and mitigators of radiation-induced normal tissue injury,” The Oncologist, vol. 15, no. 4, pp. 360–371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Marzatico, C. Porta, M. Moroni et al., “In vitro antioxidant properties of amifostine (WR-2721, ethyol),” Cancer Chemotherapy and Pharmacology, vol. 45, no. 2, pp. 172–176, 2000. View at Google Scholar · View at Scopus
  36. S. Tabaczar, M. Talar, and K. Gwoździński, “Nitroxides as antioxidants: possibilities of their application in chemoprevention and radioprotection,” Postepy Higieny i Medycyny Doswiadczalnej, vol. 65, pp. 46–54, 2011. View at Google Scholar · View at Scopus
  37. X. Cai, J. Hao, X. Zhang et al., “The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation-induced immune and mitochondrial dysfunction,” Toxicology and Applied Pharmacology, vol. 243, no. 1, pp. 27–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. Q. Zhao, Y. Li, J. Xu, R. Liu, and W. Li, “Radioprotection by fullerenols of Stylonychia mytilus exposed to γ-rays,” International Journal of Radiation Biology, vol. 81, no. 2, pp. 169–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Stankov, I. Borisev, V. Kojic, L. Rutonjski, G. Bogdanovic, and A. Djordjevic, “Modification of antioxidative and antiapoptotic genes expression in irradiated K562 cells upon fullerenol C60(OH)624 nanoparticle treatment,” Journal of Nanoscience and Nanotechnology, vol. 13, no. 1, pp. 105–113, 2013. View at Publisher · View at Google Scholar
  40. G. L. Beretta and F. Zunino, “Molecular mechanisms of anthracycline activity,” Topics in Current Chemistry, vol. 283, pp. 1–19, 2008. View at Google Scholar
  41. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni, “Anthracyclines: molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity,” Pharmacological Reviews, vol. 56, no. 2, pp. 185–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Menna, O. Gonzalez Paz, M. Chello, E. Covino, E. Salvatorelli, and G. Minotti, “Anthracycline cardiotoxicity,” Expert Opinion on Drug Safety, vol. 11, no. 1, pp. S21–S36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Injac, M. Perse, M. Cerne et al., “Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer,” Biomaterials, vol. 30, no. 6, pp. 1184–1196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. V. M. Torres, B. Srdjenovic, V. Jacevic, V. D. Simic, A. Djordjevic, and A. L. Simplício, “Fullerenol C60(OH)24 prevents doxorubicin-induced acute cardiotoxicity in rats,” Pharmacological Reports, vol. 62, no. 4, pp. 707–718, 2010. View at Google Scholar · View at Scopus
  45. B. Srdjenovic, V. Milic-Torres, N. Grujic, K. Stankov, A. Djordjevic, and V. Vasovic, “Antioxidant properties of fullerenol C60(OH)24 in rat kidneys, testes, and lungs treated with doxorubicin,” Toxicology Mechanisms and Methods, vol. 20, no. 6, pp. 298–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. V. D. Milic, K. Stankov, R. Injac et al., “Activity of antioxidative enzymes in erythrocytes after a single dose administration of doxorubicin in rats pretreated with fullerenol C 60(OH)24,” Toxicology Mechanisms and Methods, vol. 19, no. 1, pp. 24–28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Chen, G. Xing, J. Wang et al., “Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity,” Nano Letters, vol. 5, no. 10, pp. 2050–2057, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Kojić, D. Jakimov, G. Bogdanović, and A. Dordević, “Effects of fullerenol C60(OH)24 on cytotoxicity induced by antitumor drugs on human breast carcinoma cell lines,” Materials Science Forum, vol. 494, pp. 543–548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Chaudhuri, A. Paraskar, S. Soni, R. A. Mashelkar, and S. Sengupta, “Fullerenol-cytotoxic conjugates for cancer chemotherapy,” ACS Nano, vol. 3, no. 9, pp. 2505–2514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. X. Yin, L. Zhao, S. G. Kang et al., “Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules,” Nanoscale, vol. 5, no. 16, pp. 7341–7348, 2013. View at Publisher · View at Google Scholar
  51. J. Grebowski, A. Krokosz, and M. Puchala, “Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene,” Biochimica et Biophysica Acta, vol. 1828, no. 2, pp. 241–248, 2013. View at Publisher · View at Google Scholar
  52. A. Krantz, “Red cell-mediated therapy: opportunities and challenges,” Blood Cells, Molecules and Diseases, vol. 23, no. 1, pp. 58–68, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. J. E. Roberts, A. R. Wielgus, W. K. Boyes, U. Andley, and C. F. Chignell, “Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells,” Toxicology and Applied Pharmacology, vol. 228, no. 1, pp. 49–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. S. R. Grobmyer and V. Krishna, “Minimally invasive cancer therapy using polyhydroxy fullerenes,” European Journal of Radiology, vol. 81, supplement 1, pp. S51–S53, 2012. View at Google Scholar
  55. F. Jiao, Y. Liu, Y. Qu et al., “Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model,” Carbon, vol. 48, no. 8, pp. 2231–2243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Balu, P. Sangeetha, D. Haripriya, and C. Panneerselvam, “Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract,” Neuroscience Letters, vol. 383, no. 3, pp. 295–300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. R. J. Reiter, “Oxidative processes and antioxidative defense mechanisms in the aging brain,” FASEB Journal, vol. 9, no. 7, pp. 526–533, 1995. View at Google Scholar · View at Scopus
  58. A. Zajdel, A. Wilczok, J. Slowinski, J. Orchel, and U. Mazurek, “Aldehydic lipid peroxidation products in human brain astrocytomas,” Journal of Neuro-Oncology, vol. 84, no. 2, pp. 167–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Buonocore, S. Perrone, and R. Bracci, “Free radicals and brain damage in the newborn,” Biology of the Neonate, vol. 79, no. 3-4, pp. 180–186, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. L. L. Dugan, V. M. G. Bruno, S. M. Amagasu, and R. G. Giffard, “Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity,” Journal of Neuroscience, vol. 15, no. 6, pp. 4545–4555, 1995. View at Google Scholar · View at Scopus
  61. L. J. S. Greenlund, T. L. Deckwerth, and E. M. Johnson Jr., “Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death,” Neuron, vol. 14, no. 2, pp. 303–315, 1995. View at Google Scholar · View at Scopus
  62. M. Dragunow, R. L. M. Faull, P. Lawlor et al., “In situ evidence for DNA fragmentation in Huntington's disease striatum and Alzheimer's disease temporal lobes,” NeuroReport, vol. 6, no. 7, pp. 1053–1057, 1995. View at Google Scholar · View at Scopus
  63. P. Calissano, C. Matrone, and G. Amadoro, “Apoptosis and in vitro Alzheimer disease neuronal models,” Communicative and Integrative Biology, vol. 2, no. 2, pp. 163–169, 2009. View at Google Scholar · View at Scopus
  64. R. Dringen, G. M. Bishop, M. Koeppe, T. N. Dang, and S. R. Robinson, “The pivotal role of astrocytes in the metabolism of iron in the brain,” Neurochemical Research, vol. 32, no. 11, pp. 1884–1890, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Bartosz, “Druga twarz tlenu,” Wydawnictwo Naukowe PWN, Warszawa, 2004.
  66. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, London, UK, 3rd edition, 1999.
  67. S. Fahn and G. Cohen, “The oxidant stress hypothesis in Parkinson's disease: evidence supporting it,” Annals of Neurology, vol. 32, no. 6, pp. 804–812, 1992. View at Publisher · View at Google Scholar · View at Scopus
  68. H.-M. Huang, H.-C. Ou, S.-J. Hsieh, and L.-Y. Chiang, “Blockage of amyloid β peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60 in PC12 cells,” Life Sciences, vol. 66, no. 16, pp. 1525–1533, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. J. E. Kim and M. Lee, “Fullerene inhibits β-amyloid peptide aggregation,” Biochemical and Biophysical Research Communications, vol. 303, no. 2, pp. 576–579, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. C.-M. Lee, S.-T. Huang, S.-H. Huang et al., “C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the β-amyloid peptide,” Nanomedicine, vol. 7, no. 1, pp. 107–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. I. Y. Podolski, Z. A. Podlubnaya, and O. V. Godukhin, “Fullerenes C60, antiamyloid action, the brain, and cognitive processes,” Biofizika, vol. 55, no. 1, pp. 71–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. I. Y. Podolski, Z. A. Podlubnaya, E. A. Kosenko et al., “Effects of hydrated forms of C60 fullerene on amyloid β-peptide fibrillization in vitro andperformance of the cognitive task,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 4-5, pp. 1479–1485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. S. S. Ali, J. I. Hardt, and L. L. Dugan, “SOD Activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study,” Nanomedicine, vol. 4, no. 4, pp. 283–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. L. L. Dugan, J. K. Gabrielsen, S. P. Yu, T.-S. Lin, and D. W. Choi, “Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons,” Neurobiology of Disease, vol. 3, no. 2, pp. 129–135, 1996. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Lotharius, L. L. Dugan, and K. L. O'Malley, “Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons,” Journal of Neuroscience, vol. 19, no. 4, pp. 1284–1293, 1999. View at Google Scholar · View at Scopus
  76. X. Cai, H. Jia, Z. Liu et al., “Polyhydroxylated fullerene derivative C60(OH)24 prevents mitochondrial dysfunction and oxidative damage in an MPP+-induced cellular model of Parkinson's disease,” Journal of Neuroscience Research, vol. 86, no. 16, pp. 3622–3634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Jin, W. Q. Chen, X. W. Tang et al., “Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents,” Journal of Neuroscience Research, vol. 62, pp. 600–607, 2000. View at Google Scholar
  78. C. A. Davie, “A review of Parkinson's disease,” British Medical Bulletin, vol. 86, no. 1, pp. 109–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Ben-Shachar, P. Riederer, and M. B. H. Youdim, “Iron-melanin interaction and lipid peroxidation: implications for Parkinson's disease,” Journal of Neurochemistry, vol. 57, no. 5, pp. 1609–1614, 1991. View at Google Scholar · View at Scopus
  80. S. J. Chinta and J. K. Andersen, “Redox imbalance in Parkinson's disease,” Biochimica et Biophysica Acta, vol. 1780, no. 11, pp. 1362–1367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. W. Dauer and S. Przedborski, “Parkinson's disease: mechanisms and models,” Neuron, vol. 39, no. 6, pp. 889–909, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Chirico, C. Fumelli, A. Marconi et al., “Carboxyfullerenes localize within mitochondria and prevent the UVB-induced intrinsic apoptotic pathway,” Experimental Dermatology, vol. 16, no. 5, pp. 429–436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Foley, C. Crowley, M. Smaihi et al., “Cellular localisation of a water-soluble fullerene derivative,” Biochemical and Biophysical Research Communications, vol. 294, no. 1, pp. 116–119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. M.-C. Tsai, Y. H. Chen, and L. Y. Chiang, “Polyhydroxylated C60, fullerenol, a novel free-radical trapper, prevented hydrogen peroxide- and cumene hydroperoxide-elicited changes in rat hippocampus in-vitro,” Journal of Pharmacy and Pharmacology, vol. 49, no. 4, pp. 438–445, 1997. View at Google Scholar · View at Scopus
  85. M. Ehrich, R. van Tassell, Y. Li, Z. Zhou, and C. L. Kepley, “Fullerene antioxidants decrease organophosphate-induced acetylcholinesterase inhibition in vitro,” Toxicology in Vitro, vol. 25, no. 1, pp. 301–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Y. Zha, B. Yang, M. L. Tang et al., “Concentration-dependent effects of fullerenol on cultured hippocampal neuron viability,” International Journal of Nanomedicine, vol. 7, pp. 3099–3109, 2012. View at Google Scholar