Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 758491, 12 pages
http://dx.doi.org/10.1155/2013/758491
Clinical Study

Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment

1Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano (I3BH), Universitat Politècnica de València, I3BH/LabHuman, Camino de Vera s/n, 46022 Valencia, Spain
2CIBER, Fisiopatología de Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28029 Madrid, Spain
3Unidad de Cirugía Hepatobiliopancreática y Trasplante Hepático, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain

Received 20 May 2013; Revised 12 September 2013; Accepted 16 September 2013

Academic Editor: Surinder K. Jindal

Copyright © 2013 F. López-Mir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. Gordon, P. J. Taylor, and C. Royston, Practical Laparoscopy, Blackwell Scientific, 1993.
  2. C. K. Rowe, M. W. Pierce, K. C. Tecci et al., “A comparative direct cost analysis of pediatric urologic robot-assisted laparoscopic surgery versus open surgery: could robot-assisted surgery be less expensive,” Journal of Endourology, vol. 26, no. 2, pp. 871–877, 2012. View at Publisher · View at Google Scholar
  3. M. Feuerstein, Augmented reality in laparoscopic surgery new concepts for intraoperative multimodal imaging [Ph.D. thesis], Fakultät für Informatik Technische Universität München, 2007.
  4. R. T. Azuma, “A survey of augmented reality,” Presence, vol. 6, no. 4, pp. 355–385, 1997. View at Google Scholar · View at Scopus
  5. E. Samset, D. Schmalstieg, J. V. Sloten et al., “Augmented reality in surgical procedures,” in Human Vision and Electronic Imaging, Proceedings of SPIE, January 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Shuhaiber, “Augmented reality in surgery,” Archives of Surgery, vol. 139, no. 2, pp. 170–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kersten-Oertel, P. Jannin, and D. L. Collins, “DVV: A taxonomy for mixed reality visualization in image guided surgery,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 2, pp. 332–352, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. Chiu, D. Dey, M. Drangova, W. D. Boyd, and T. M. Peters, “3-D image guidance for minimally invasive robotic coronary artery bypass,” The Heart Surgery Forum, vol. 3, no. 3, pp. 224–231, 2000. View at Google Scholar · View at Scopus
  9. J. W. Cannon, J. A. Stoll, S. D. Selha, P. E. Dupont, R. D. Howe, and D. F. Torchiana, “Port placement planning in robot-assisted coronary artery bypass,” IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pp. 912–917, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Adhami and È. Coste-Manière, “Optimal planning for minimally invasive surgical robots,” IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pp. 854–863, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Scheuering, A. Schenk, A. Schneider, B. Preim, and G. Greiner, “Intraoperative augmented reality for minimally invasive liver interventions,” in Medical Imaging: Visualization, Image-Guided Procedures and Display, Proceedings of SPIE, pp. 407–417, February 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Bichlmeier, S. M. Heining, M. Feuerstein, and N. Navab, “The virtual mirror: a new interaction paradigm for augmented reality environments,” IEEE Transactions on Medical Imaging, vol. 28, no. 9, pp. 1498–1510, 2009. View at Google Scholar · View at Scopus
  13. M. Feuerstein, T. Mussack, S. M. Heining, and N. Navab, “Intraoperative laparoscope augmentation for port placement and resection planning in minimally invasive liver resection,” IEEE Transactions on Medical Imaging, vol. 27, no. 3, pp. 355–369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Volonte, P. Bucher, F. Pugin et al., “Mixed reality for laparoscopic distal pancreatic resection,” International Journal of Computer Assisted Radiology and Surgery, vol. 5, no. 1, pp. 122–130, 2010. View at Publisher · View at Google Scholar
  15. V. Ferrari, G. Megali, E. Troia, A. Pietrabissa, and F. Mosca, “A 3-D mixed-reality system for stereoscopic visualization of medical dataset,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 11, pp. 2627–2633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. K. McSherry, “Cholecystectomy: the gold standard,” The American Journal of Surgery, vol. 158, no. 3, pp. 174–178, 1989. View at Google Scholar · View at Scopus
  17. C.-K. Kum, E. Eypasch, A. Aljaziri, and H. Troidl, “Randomized comparison of pulmonary function after the 'French' and 'American' techniques of laparoscopic cholecystectomy,” British Journal of Surgery, vol. 83, no. 7, pp. 938–941, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Martínez-Martínez, M. J. Rupérez, M. A. Lago, F. López-Mir, C. Monserrat, and M. Alcañíz, “Pneumoperitoneum technique simulation in laparoscopic surgery on lamb liver samples and 3D reconstruction,” Studies in Health Technology and Information, vol. 18, pp. 348–350, 2010. View at Google Scholar
  19. C. Schönfelder, T. Stark, L. Kahrs et al., “Port visualization for laparoscopic surgery-setup and first intraoperative evaluation,” International Journal of Computer Assisted Radiology and Surgery, vol. 3, no. 1, pp. 141–142, 2008. View at Google Scholar
  20. D. Simitopoulos and A. Kosaka, “An augmented reality system for surgical navigation,” in Proceedings of the International Conference on Augmented, Virtual Environments and Three-dimensional Imaging, pp. 152–156, May 2001.
  21. N. Glossop, Z. Wang, C. Wedlake, J. Moore, and T. Peters, “Augmented reality laser projection device for surgery,” Studies in Health Technology and Informatics, vol. 98, pp. 104–110, 2004. View at Google Scholar · View at Scopus
  22. R. A. Mischkowski, M. J. Zinser, A. C. Kübler, B. Krug, U. Seifert, and J. E. Zöller, “Application of an augmented reality tool for maxillary positioning in orthognathic surgery: a feasibility study,” Journal of Cranio-Maxillofacial Surgery, vol. 34, no. 8, pp. 478–483, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. B. W. King, L. A. Reisner, M. D. Klein, G. W. Auner, and A. K. Pandya, “Registered, sensor-integrated virtual reality for surgical applications,” in Proceedings of the IEEE Virtual Reality Conference (VR '07), pp. 277–278, Charlotte, Calif, USA, March 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Kawamata, H. Iseki, T. Shibasaki et al., “Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note,” Neurosurgery, vol. 50, no. 6, pp. 1393–1397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Vogt, A. Khamene, and F. Sauer, “Reality augmentation for medical procedures: system architecture, single camera marker tracking, and system evaluation,” International Journal of Computer Vision, vol. 70, no. 2, pp. 179–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. J. Fuertes, F. López-Mir, V. Naranjo, M. Ortega, E. Villanueva, and M. Alcañiz, “Augmented reality system for keyhole surgery: performance and accuracy validation,” in Proceedings of the International Conference on Computer Graphics Theory and Applications (GRAPP '11), pp. 273–279, Algarve, Portugal, March 2011. View at Scopus
  27. S. Nicolau, L. Soler, D. Mutter, and J. Marescaux, “Augmented reality in laparoscopic surgical oncology,” Surgical Oncology, vol. 20, no. 3, pp. 189–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. F. López-Mir, V. Naranjo, J. Angulo, E. Villanueva, M. Alcañiz, and S. López-Celada, “Aorta segmentation using the watershed algorithm for an augmented reality system in laparoscopic surgery,” in Proceedings of the IEEE International Conference on Image Processing, pp. 2705–2708, Brussels, Belgium, September 2011.
  29. L. Ibañez, W. Schroeder, L. Ng, and J. Cates, The ITK Sotware Guide, Kitware, 2005.
  30. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Pintaric, “An adaptive thresholding algorithm for augmented reality toolkit,” in Proceedings of the 2nd IEEE International Augmented Reality Toolkit Workshop (ART '03), 2003.
  32. J. Martin-Gutierrez, J. L. Saorin, M. Contero, M. Alcañiz, D. Pérez-López, and M. Ortega, “Education: design and validation of an augmented book for spatial abilities development in engineering students,” Computers and Graphics, vol. 34, no. 1, pp. 77–91, 2010. View at Publisher · View at Google Scholar
  33. R. Hartley and A. Zisserman, “Multiple View Geometry,” in Computer Vision, Cambridge University Press, 2nd edition, 2003. View at Google Scholar
  34. G. Simon, A. W. Fitzgibbon, and A. Zisserman, “Markerless tracking using planar structures in the scene,” in Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR '00), pp. 120–128, 2000.
  35. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” Journal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963. View at Google Scholar
  36. F. Martínez-Martínez, M. A. Lago, M. J. Rupérez, and C. Monserrat, “Analysis of several biomechanical models for the simulation of lamb liver behavior using similarity coefficients from medical image,” Computer Methods in Biomechanics and Biomedical Engineering, pp. 1–11, 2012. View at Google Scholar