Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 795095, 8 pages
http://dx.doi.org/10.1155/2013/795095
Research Article

Low-Cytotoxic Synthetic Bromorutaecarpine Exhibits Anti-Inflammation and Activation of Transient Receptor Potential Vanilloid Type 1 Activities

1Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu-xing Street, Taipei 110, Taiwan
2Institute of Chemical Engineering, College of Engineering, National Taipei University of Technology, Taipei, Taiwan
3Department of Food and Beverage Management, Taipei College of Maritime Technology, Taipei, Taiwan
4Department of Internal Medicine, School of Medicine, Taipei Medical University, No. 250, Wu-xing Street, Taipei 110, Taiwan
5Department of Biochemistry, College of Medicine, Taipei Medical University, No. 250, Wu-xing Street, Taipei 110, Taiwan
6Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
7Institute of Biochemical and Biomedical Engineering, College of Engineering, National Taipei University of Technology, Taipei, Taiwan

Received 12 September 2013; Accepted 29 October 2013

Academic Editor: Joen-Rong Sheu

Copyright © 2013 Chi-Ming Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Lu, J. L. Bao, X. P. Chen, M. Huang, and Y. T. Wang, “Alkaloids isolated from natural herbs as the anticancer agents,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 485042, 12 pages, 2012. View at Publisher · View at Google Scholar
  2. H. Yu, H. Jin, W. Gong, Z. Wang, and H. Liang, “Pharmacological actions of multi-target-directed evodiamine,” Molecules, vol. 18, no. 2, pp. 1826–1843, 2013. View at Publisher · View at Google Scholar
  3. Y.-N. Liu, S.-L. Pan, C.-H. Liao et al., “Evodiamine represses hypoxia-induced inflammatory proteins expression and hypoxia-inducible factor 1α accumulation in RAW264.7,” Shock, vol. 32, no. 3, pp. 263–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. W.-F. Chiou, C.-J. Chou, A. Y.-C. Shum, and C.-F. Chen, “The vasorelaxant effect of evodiamine in rat isolated mesenteric arteries: mode of action,” European Journal of Pharmacology, vol. 215, no. 2-3, pp. 277–283, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. W.-F. Chiou, A. Y.-C. Shum, J.-F. Liao, and C.-F. Chen, “Studies of the cellular mechanisms underlying the vasorelaxant effects of rutaecarpine, a bioactive component extracted from an herbal drug,” Journal of Cardiovascular Pharmacology, vol. 29, no. 4, pp. 490–498, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. G.-J. Wang, X.-C. Wu, C.-F. Chen et al., “Vasorelaxing action of rutaecarpine: effects of rutaecarpine on calcium channel activities in vascular endothelial and smooth muscle cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 289, no. 3, pp. 1237–1244, 1999. View at Google Scholar · View at Scopus
  7. D. Li, X.-J. Zhang, L. Chen et al., “Calcitonin gene-related peptide mediates the cardioprotective effects of rutaecarpine against ischaemia-reperfusion injury in spontaneously hypertensive rats,” Clinical and Experimental Pharmacology and Physiology, vol. 36, no. 7, pp. 662–667, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Li, J. Peng, H.-Y. Xin et al., “Calcitonin gene-related peptide-mediated antihypertensive and anti-platelet effects by rutaecarpine in spontaneously hypertensive rats,” Peptides, vol. 29, no. 10, pp. 1781–1788, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Zhou, C.-P. Hu, C.-J. Wang, T.-T. Li, J. Peng, and Y.-J. Li, “Calcitonin gene-related peptide inhibits angiotensin II-induced endothelial progenitor cells senescence through up-regulation of klotho expression,” Atherosclerosis, vol. 213, no. 1, pp. 92–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C.-P. Hu, L. Xiao, H.-W. Deng, and Y.-J. Li, “The depressor and vasodilator effects of rutaecarpine are mediated by calcitonin gene-related peptide,” Planta Medica, vol. 69, no. 2, pp. 125–129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. P.-Y. Deng, F. Ye, W.-J. Cai et al., “Stimulation of calcitonin gene-related peptide synthesis and release: mechanisms for a novel antihypertensive drug, rutaecarpine,” Journal of Hypertension, vol. 22, no. 9, pp. 1819–1829, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. C. Ching, C. Y. Chen, K. H. Su et al., “Implication of AMP-activated protein kinase in transient receptor potential vanilloid type 1-mediated activation of endothelial nitric oxide synthase,” Molecular Medicine, vol. 18, pp. 805–815, 2012. View at Google Scholar
  13. L.-C. Ching, Y. R. Kou, S.-K. Shyue et al., “Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1,” Cardiovascular Research, vol. 91, no. 3, pp. 492–501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Okada, P. S. Reinach, K. Shirai et al., “TRPV1 involvement in inflammatory tissue fibrosis in mice,” American Journal of Pathology, vol. 178, no. 6, pp. 2654–2664, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Torres-Narvaez, V. M. Ldel, E. V. Lopez et al., “Role of the transient receptor potential vanilloid type 1 receptor and stretch-activated ion channels in nitric oxide release from endothelial cells of the aorta and heart in rats,” Experimental and Clinical Cardiology, vol. 17, no. 3, pp. 89–94, 2012. View at Google Scholar
  16. J. Wei, L. C. Ching, J. F. Zhao et al., “Essential role of transient receptor potential vanilloid type 1 in evodiamine-mediated protection against atherosclerosis,” Acta Physiologica, vol. 207, no. 2, pp. 299–307, 2013. View at Publisher · View at Google Scholar
  17. J. R. Sheu, W. C. Hung, C. H. Wu, Y. M. Lee, and M. H. Yen, “Antithrombotic effect of rutaecarpine, an alkaloid isolated from Evodia rutaecarpa, on platelet plug formation in in vivo experiments,” British Journal of Haematology, vol. 110, no. 1, pp. 110–115, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-R. Sheu, Y.-C. Kan, W.-C. Hung et al., “The antiplatelet activity of rutaecarpine, an alkaloid isolated from Evodia rutaecarpa, is mediated through inhibition of phospholipase C,” Thrombosis Research, vol. 92, no. 2, pp. 53–64, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Du, X. F. Wang, Q. M. Zhou et al., “Evodiamine induces apoptosis and inhibits metastasis in MDAMB-231 human breast cancer cells in vitro and in vivo,” Oncology Reports, vol. 30, no. 2, pp. 685–694, 2013. View at Publisher · View at Google Scholar
  20. M. Adams, A. Mahringer, O. Kunert, G. Fricker, T. Efferth, and R. Bauer, “Cytotoxicity and P-glycoprotein modulating effects of quinolones and indoloquinazolines from the Chinese herb Evodia rutaecarpa,” Planta Medica, vol. 73, no. 15, pp. 1554–1557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. N. S. Vyawahare, A. A. Hadambar, A. S. Chothe, R. R. Jalnapurkar, A. M. Bhandare, and M. K. Kathiravan, “Effect of novel synthetic evodiamine analogue on sexual behavior in male rats,” Journal of Chemical Biology, vol. 5, no. 1, pp. 35–42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Dong, S. Wang, Z. Miao et al., “New tricks for an old natural product: discovery of highly potent evodiamine derivatives as novel antitumor agents by systemic structure-activity relationship analysis and biological evaluations,” Journal of Medicinal Chemistry, vol. 55, no. 17, pp. 7593–7613, 2012. View at Publisher · View at Google Scholar
  23. S. I. Kim, S. H. Lee, E. S. Lee, C. S. Lee, and Y. Jahng, “New topoisomerases inhibitors: synthesis of rutaecarpine derivatives and their inhibitory activity against topoisomerases,” Archives of Pharmacal Research, vol. 35, no. 5, pp. 785–789, 2012. View at Publisher · View at Google Scholar
  24. Z. Chen, G. Hu, D. Li et al., “Synthesis and vasodilator effects of rutaecarpine analogues which might be involved transient receptor potential vanilloid subfamily, member 1 (TRPV1),” Bioorganic and Medicinal Chemistry, vol. 17, no. 6, pp. 2351–2359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S.-J. Lin, H.-K. Lu, H.-W. Lee, Y.-C. Chen, C.-L. Li, and L.-F. Wang, “Nitric oxide inhibits androgen receptor-mediated collagen production in human gingival fibroblasts,” Journal of Periodontal Research, vol. 47, no. 6, pp. 701–710, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. S.-H. Yu, Y.-T. Kao, J.-Y. Wu et al., “Inhibition of AMPK-associated autophagy enhances caffeic acid phenethyl ester-induced cell death in C6 glioma cells,” Planta Medica, vol. 77, no. 9, pp. 907–914, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. F. M. Suk, W. J. Jou, R. J. Lin et al., “15, 16-dihydrotanshinone I-induced apoptosis in human colorectal cancer cells: involvement of ATF3,” Anticancer Research, vol. 33, no. 8, pp. 3225–3231, 2013. View at Google Scholar
  28. C.-W. Lin, S.-C. Shen, C.-C. Chien, L.-Y. Yang, L.-T. Shia, and Y.-C. Chen, “12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKCα/ERK/NF-κB-dependent MMP-9 expression,” Journal of Cellular Physiology, vol. 225, no. 2, pp. 472–481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Henecka, H. Timmler, R. Lorenz, and W. Geiger, “Zur Kenntnis der Japp-Klingemann-Reaktion,” Chemische Berichte, vol. 90, no. 6, pp. 1060–1069, 1957. View at Publisher · View at Google Scholar
  30. K. Narayanan, L. Schindler, and J. M. Cook, “Carboxyl-mediated Pictet-Spengler reaction. Direct synthesis of 1,2,3,4-tetrahydro-β-carbolines from tryptamine-2-carboxylic acids,” Journal of Organic Chemistry, vol. 56, no. 1, pp. 359–365, 1991. View at Google Scholar · View at Scopus
  31. W.-F. Chiou, Y.-J. Sung, J.-F. Liao, A. Y.-C. Shum, and C.-F. Chen, “Inhibitory effect of dehydroevodiamine and evodiamine on nitric oxide production in cultured murine macrophages,” Journal of Natural Products, vol. 60, no. 7, pp. 708–711, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. H. C. Yong, M. S. Eun, S. K. Yeong, F. C. Xing, J. L. Jung, and P. K. Hyun, “Anti-inflammatory principles from the fruits of Evodia rutaecarpa and their cellular action mechanisms,” Archives of Pharmacal Research, vol. 29, no. 4, pp. 293–297, 2006. View at Google Scholar · View at Scopus
  33. Y. H. Hong, W. J. Lee, S. H. Lee et al., “Synthesis and biological properties of benzo-annulated rutaecarpines,” Biological and Pharmaceutical Bulletin, vol. 33, no. 10, pp. 1704–1709, 2010. View at Google Scholar · View at Scopus
  34. J.-R. Sheu, “Pharmacological effects of rutaecarpine, an alkaloid isolated from Evodia rutaecarpa,” Cardiovascular Drug Reviews, vol. 17, no. 3, pp. 237–245, 1999. View at Google Scholar · View at Scopus
  35. J. Yu, G.-S. Tan, P.-Y. Deng, K.-P. Xu, C.-P. Hu, and Y.-J. Li, “Involvement of CGRP in the inhibitory effect of rutaecarpine on vasoconstriction induced by anaphylaxis in guinea pig,” Regulatory Peptides, vol. 125, no. 1–3, pp. 93–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. J. Li, F. Zhang, Q. H. Gong, Q. Wu, L. M. Yu, and A. S. Sun, “Rutaecarpine inhibits angiotensin II-induced proliferation in rat vascular smooth muscle cells,” Chinese Journal of Integrative Medicine, 2013. View at Publisher · View at Google Scholar
  37. J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Yoshimatsu and T. Watabe, “Roles of TGF-beta signals in endothelial-mesenchymal transition during cardiac fibrosis,” International Journal of Inflammation, vol. 2011, Article ID 724080, 8 pages, 2011. View at Publisher · View at Google Scholar