Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 812641, 12 pages
http://dx.doi.org/10.1155/2013/812641
Research Article

Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

Department of Pharmacology, College of Medicine, Dankook Translational Research Center, Dankook University, 119 Dandaero, Anseo-dong, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea

Received 10 June 2013; Accepted 23 July 2013

Academic Editor: Thomas Van Groen

Copyright © 2013 Dhiraj Maskey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Calcium binding proteins (CaBPs) such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF) exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR) in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus.