Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 843657, 11 pages
Research Article

Alleviation of Hyperglycemia Induced Vascular Endothelial Injury by Exenatide Might Be Related to the Reduction of Nitrooxidative Stress

1Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Fengtai District, Beijing 100069, China
2Nursing Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Street, Shijingshan District, Beijing 100144, China
3Department of Neurology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Street, Xicheng District, Beijing 100050, China
4Department of Nephrology, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomenxiang, Dongcheng District, Beijing 100730, China
5Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomenxiang, Dongcheng District, Beijing 100730, China

Received 7 July 2013; Accepted 14 October 2013

Academic Editor: Georgeta Mihai

Copyright © 2013 Qian Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We will investigate the effects of exenatide on vascular endothelial injury and nitrooxidative stress in hyperglycemia both in vivo and in vitro and explore the role of nitrooxidative stress in endothelium-protective action of exenatide. Healthy male Wistar rats were randomly divided into 4 groups: control, diabetes mellitus (DM) model, low dose of exenatide treatment, and high dose of exenatide treatment. In vitro study showed that, compared with control group, the DM rats exhibited a lowered endothelium-dependent relaxation and damaged structural integrity of thoracic aortas, and there was a significant increase in plasma nitrotyrosine concentration. These parameters were improved after treatment with either low dose or high dose of exenatide for 45 days. In vitro study showed that exendin-4 (the active ingredient of exenatide) attenuated HUVECs injury induced by high glucose, with improving cell viability and attenuating cell apoptosis. Exendin-4 also significantly alleviated the increased malondialdehyde (MDA), nitrotyrosine content, and inducible nitric oxide synthase (iNOS) expression induced by high glucose in HUVECs. In conclusion, this study demonstrates that exenatide treatment can alleviate the vascular endothelial injury, as well as attenuating the nitrooxidative stress in hyperglycemia, implying that the endothelium-protective effect of exenatide might be related to the reduction of nitrooxidative stress.