Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 873614, 7 pages
http://dx.doi.org/10.1155/2013/873614
Review Article

Toward the Era of a One-Stop Imaging Service Using an Angiography Suite for Neurovascular Disorders

1Department of Radiology, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 112, Taiwan
2National Yang-Ming University, Taipei 112, Taiwan

Received 28 January 2013; Revised 21 April 2013; Accepted 23 April 2013

Academic Editor: Fan-Lin Kong

Copyright © 2013 Sheng-Che Hung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. P. Harrington, L. M. Boxt, and P. D. Murray, “Digital subtraction angiography: overview of technical principles,” American Journal of Roentgenology, vol. 139, no. 4, pp. 781–786, 1982. View at Google Scholar · View at Scopus
  2. M. Kamran, S. Nagaraja, and J. V. Byrne, “C-arm flat detector computed tomography: the technique and its applications in interventional neuro-radiology,” Neuroradiology, vol. 52, no. 4, pp. 319–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. U. Neitzel, “Status and prospects of digital detector technology for CR and DR,” Radiation Protection Dosimetry, vol. 114, no. 1–3, pp. 32–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Fahrig and D. W. Holdsworth, “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: image-based correction of gantry motion nonidealities,” Medical Physics, vol. 27, no. 1, pp. 30–38, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Daly, J. H. Siewerdsen, Y. B. Cho, D. A. Jaffray, and J. C. Irish, “Geometric calibration of a mobile C-arm for intraoperative cone-beam CT,” Medical Physics, vol. 35, no. 5, pp. 2124–2136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Cho, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “Accurate technique for complete geometric calibration of cone-beam computed tomography systems,” Medical Physics, vol. 32, no. 4, pp. 968–983, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Noo, R. Clackdoyle, C. Mennessier, T. A. White, and T. J. Roney, “Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography,” Physics in Medicine and Biology, vol. 45, no. 11, pp. 3489–3508, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Gupta, A. C. Cheung, S. H. Bartling et al., “Flat-panel volume CT: fundamental principles, technology, and applications,” Radiographics, vol. 28, no. 7, pp. 2009–2022, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. Siewerdsen, “Cone-beam CT with a flat-panel detector: fsrom image science to image-guided surgery,” Nuclear Instruments and Methods in Physics Research A, vol. 648, no. 1, pp. S241–S250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Fahrig, A. J. Fox, S. Lownie, and D. W. Holdsworth, “Use of a C-arm system to generate true three-dimensional computed rotational angiograms: preliminary in vitro and in vivo results,” American Journal of Neuroradiology, vol. 18, no. 8, pp. 1507–1514, 1997. View at Google Scholar · View at Scopus
  11. U. Linsenmaier, C. Rock, E. Euler et al., “Three-dimensional CT with a modified C-arm image intensifier: feasibility,” Radiology, vol. 224, no. 1, pp. 286–292, 2002. View at Google Scholar · View at Scopus
  12. M. Grass, R. Koppe, E. Klotz et al., “Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data,” Computerized Medical Imaging and Graphics, vol. 23, no. 6, pp. 311–321, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. W. A. Kalender and Y. Kyriakou, “Flat-detector computed tomography (FD-CT),” European Radiology, vol. 17, no. 11, pp. 2767–2779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. Cowen, A. G. Davies, and M. U. Sivananthan, “The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography,” Clinical Radiology, vol. 63, no. 10, pp. 1073–1085, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with a flat-panel imager: initial performance characterization,” Medical Physics, vol. 27, no. 6, pp. 1311–1323, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Kyriakou, T. Struffert, A. Dörfler, and W. A. Kalender, “Basics priciples of flat detector computed tomography (FD-CT),” Radiologe, vol. 49, no. 9, pp. 811–819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. J. Cloft and D. F. Kallmes, “Cerebral aneurysm perforations complicating therapy with Guglielmi detachable coils: a meta-analysis,” American Journal of Neuroradiology, vol. 23, no. 10, pp. 1706–1709, 2002. View at Google Scholar · View at Scopus
  18. A. Dörfler, T. Struffert, T. Engelhorn, and C. Richter, “Rotational flat-panel computed tomography in diagnostic and interventional neuroradiology,” RoFo, vol. 180, no. 10, pp. 891–898, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Struffert, G. Richter, T. Engelhorn et al., “Visualisation of intracerebral haemorrhage with flat-detector CT compared to multislice CT: results in 44 cases,” European Radiology, vol. 19, no. 3, pp. 619–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. N. S. Heran, J. K. Song, K. Namba, W. Smith, Y. Niimi, and A. Berenstein, “The utility of DynaCT in neuroendovascular procedures,” American Journal of Neuroradiology, vol. 27, no. 2, pp. 330–332, 2006. View at Google Scholar · View at Scopus
  21. T. Struffert, S. Kloska, T. Engelhorn et al., “Optimized intravenous Flat Detector CT for non-invasive visualization of intracranial stents: first results,” European Radiology, vol. 21, no. 2, pp. 411–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. R. Levitt, D. L. Cooke, B. V. Ghodke, L. J. Kim, D. K. Hallam, and L. N. Sekhar, “‘Stent view’ flat-detector CT and stent-assisted treatment strategies for complex intracranial aneurysms,” World Neurosurgery, vol. 75, no. 2, pp. 275–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Zellerhoff, Y. Deuerling-Zheng, C. M. Strother et al., “Measurement of cerebral blood volume using angiographic C-arm systems,” in Medical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 7262 of Proceedings of SPIE, pp. 72620H-1–72620H-8, 2009.
  24. T. Struffert, Y. Deuerling-Zheng, S. Kloska et al., “Cerebral blood volume imaging by flat detector computed tomography in comparison to conventional multislice perfusion CT,” European Radiology, vol. 21, no. 4, pp. 882–889, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Struffert, Y. Deuerling-Zheng, S. Kloska et al., “Flat detector CT in the evaluation of brain parenchyma, intracranial vasculature, and cerebral blood volume: a pilot study in patients with acute symptoms of cerebral ischemia,” American Journal of Neuroradiology, vol. 31, no. 8, pp. 1462–1469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Ganguly, A. Fieselmann, M. Marks et al., “Cerebral CT perfusion using an interventional C-arm imaging system: cerebral blood flow measurements,” American Journal of Neuroradiology, vol. 32, no. 8, pp. 1525–1531, 2011. View at Google Scholar
  27. J. L. Saver, “Time is brain—quantified,” Stroke, vol. 37, no. 1, pp. 263–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Mordasini, M. El-Koussy, C. Brekenfeld et al., “Applicability of tableside flat panel detector CT parenchymal cerebral blood volume measurement in neurovascular interventions: preliminary clinical experience,” American Journal of Neuroradiology, vol. 33, no. 1, pp. 154–158, 2012. View at Google Scholar
  29. C. J. Lin, M. Yu, S. C. Hung et al., “In-room assessment of cerebral blood volume for guidance during intra-arterial thrombolytic therapy,” Interventional Neuroradiology, vol. 18, no. 4, pp. 463–468, 2012. View at Google Scholar
  30. A. Molyneux, R. Kerr, I. Stratton et al., “International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomized trial,” Journal of Stroke and Cerebrovascular Diseases, vol. 11, no. 6, pp. 304–314, 2002. View at Google Scholar
  31. L. Pierot, L. Spelle, and F. Vitry, “ATENA: the first prospective, multicentric evaluation of the endovascular treatment of unruptured intracranial aneurysms,” Journal of Neuroradiology, vol. 35, no. 2, pp. 67–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. P. von Gottberg, M. Psychogios, G. Schuetze et al., “Feasibility of flat panel detector computed tomography for position assessment of external ventricular drainage,” Neurologia i Neurochirurgia Polska, vol. 47, no. 1, pp. 32–42, 2013. View at Google Scholar
  33. M. Doelken, T. Struffert, G. Richter et al., “Flat-panel detector volumetric CT for visualization of subarachnoid hemorrhage and ventricles: preliminary results compared to conventional CT,” Neuroradiology, vol. 50, no. 6, pp. 517–523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Richter, T. Engelhorn, T. Struffert et al., “Flat panel detector angiographic CT for stent-assisted coil embolization of broad-based cerebral aneurysms,” American Journal of Neuroradiology, vol. 28, no. 10, pp. 1902–1908, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. H. Buhk, K. Kallenberg, A. Mohr, P. Dechent, and M. Knauth, “Evaluation of angiographic computed tomography in the follow-up after endovascular treatment of cerebral aneurysms—a comparative study with DSA and TOF-MRA,” European Radiology, vol. 19, no. 2, pp. 430–436, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Clarencon, M. Piotin, S. Pistocchi, D. Babic, and R. Blanc, “Evaluation of stent visibility by flat panel detector CT in patients treated for intracranial aneurysms,” Neuroradiology, vol. 54, no. 10, pp. 1121–1125, 2012. View at Google Scholar
  37. P. Mordasini, F. Al-Senani, J. Gralla, D. D. Do, C. Brekenfeld, and G. Schroth, “The use of flat panel angioCT (DynaCT) for navigation through a deformed and fractured carotid stent,” Neuroradiology, vol. 52, no. 7, pp. 629–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. E. D. Greenberg, R. Gold, M. Reichman et al., “Diagnostic accuracy of CT angiography and CT perfusion for cerebral vasospasm: a meta-analysis,” American Journal of Neuroradiology, vol. 31, no. 10, pp. 1853–1860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Zhang, Q. Huang, Y. Zhang et al., “A single-center study of Wingspan stents for symptomatic atherosclerotic stenosis of the middle cerebral artery,” Journal of Clinical Neuroscience, vol. 20, no. 3, pp. 362–366, 2013. View at Google Scholar
  40. Y. S. Shin, B. M. Kim, S. H. Suh et al., “Wingspan stenting for intracranial atherosclerotic stenosis: clinical outcomes and risk factors for in-stent restenosis,” Neurosurgery, vol. 72, no. 4, pp. 596–604, 2013. View at Google Scholar
  41. Y. Zhou, Q. W. Yang, and H. Y. Xiong, “Angioplasty with stenting for intracranial atherosclerosis: a systematic review,” Journal of International Medical Research, vol. 40, no. 1, pp. 18–27, 2012. View at Google Scholar
  42. D. J. Fiorella, A. S. Turk, E. I. Levy et al., “US wingspan registry: 12-month follow-up results,” Stroke, vol. 42, no. 7, pp. 1976–1981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. N. Psychogios, P. Schramm, J. H. Buhk et al., “Angiographic CT after intravenous contrast agent application: a noninvasive follow-up tool after intracranial angioplasty and stenting,” American Journal of Neuroradiology, vol. 31, no. 10, pp. 1886–1891, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Waaijer, M. S. Van Leeuwen, M. J. P. Van Osch et al., “Changes in cerebral perfusion after revascularization of symptomatic carotid artery stenosis: CT measurement,” Radiology, vol. 245, no. 2, pp. 541–548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Duan, G. Li, Y. Yang et al., “Changes in cerebral hemodynamics after carotid stenting of symptomatic carotid artery,” European Journal of Radiology, vol. 81, no. 4, pp. 744–748, 2012. View at Publisher · View at Google Scholar
  46. H. L. Lutsep, “Stenting of Symptomatic Atherosclerotic Lesions in the Vertebral or Intracranial Arteries (SSYLVIA): study results,” Stroke, vol. 35, no. 6, pp. 1388–1392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. J. C. Wojak, D. C. Dunlap, K. R. Hargrave, L. A. DeAlvare, H. S. Culbertson, and J. J. Connors, “Intracranial angioplasty and stenting: long-term results from a single center,” American Journal of Neuroradiology, vol. 27, no. 9, pp. 1882–1892, 2006. View at Google Scholar · View at Scopus
  48. A. Bose, M. Hartmann, H. Henkes et al., “A novel, self-expanding, nitinol stent in medically refractory intracranial atherosclerotic stenoses: the Wingspan study,” Stroke, vol. 38, no. 5, pp. 1531–1537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. J. H. Buhk, P. Lingor, and M. Knauth, “Angiographic CT with intravenous administration of contrast medium is a noninvasive option for follow-up after intracranial stenting,” Neuroradiology, vol. 50, no. 4, pp. 349–354, 2008. View at Publisher · View at Google Scholar · View at Scopus