Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 906912, 7 pages
http://dx.doi.org/10.1155/2013/906912
Research Article

Oxidative Stress and Antimicrobial Activity of Chromium(III) and Ruthenium(II) Complexes on Staphylococcus aureus and Escherichia coli

1Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
2Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET-UNC, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
3IMBIV-CONICET, Instituto Multidisciplinario de Biología Vegetal, Ciudad Universitaria, X5000HUA Córdoba, Argentina

Received 30 April 2013; Revised 8 July 2013; Accepted 1 August 2013

Academic Editor: Brad Upham

Copyright © 2013 Paulina L. Páez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. W. Taylor, P. D. Stapleton, and J. Paul Luzio, “New ways to treat bacterial infections,” Drug Discovery Today, vol. 7, no. 21, pp. 1086–1091, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Del Carmen Fernández-Fernández, R. Bastida, A. MacÍas, L. Valencia, and P. Pérez-Lourido, “Different nuclearities of M(II) nitrate complexes (M = Co, Ni, Cu and Cd) with a tetrapyridyl pendant-armed hexaazamacrocyclic ligand,” Polyhedron, vol. 25, no. 3, pp. 783–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Chaudhary, N. Bansal, N. Fahmi, and R. V. Singh, “Tetraazamacrocycles of manganese and iron metals: synthesis, spectroscopic characterization and biological evaluation,” Indian Journal of Chemistry A, vol. 43, no. 2, pp. 320–322, 2004. View at Google Scholar · View at Scopus
  4. C. Krishnamurti, L. A. Saryan, and D. H. Petering, “Effects of ethylenediaminetetraacetic acid and 1,10-phenanthroline on cell proliferation and DNA synthesis of Ehrlich ascites cells,” Cancer Research, vol. 40, no. 11, pp. 4092–4099, 1980. View at Google Scholar · View at Scopus
  5. R. N. Patel, N. Singh, K. K. Shukla et al., “Characterization and biological activities of two copper(II) complexes with diethylenetriamine and 2,2′-bipyridine or 1,10-phenanthroline as ligands,” Spectrochimica Acta A, vol. 62, no. 1–3, pp. 261–268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. R. S. Srivastava, “Synthesis, characterization and fungitoxicity of bidentate high-spin six coordinate 3rd metal complexes with N-(5-phenyl-1,3,4-thiadiazol-2-yl) aceta/benzamidines,” Inorganica Chimica Acta, vol. 55, pp. L71–L74, 1981. View at Google Scholar · View at Scopus
  7. R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, and B. U. Nair, “Interaction of DNA with [Cr(Schiff base)(H2O)2]ClO4,” Biochimica et Biophysica Acta, vol. 1475, no. 2, pp. 157–162, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Y. Shrivastava and B. U. Nair, “Chromium(III)-mediated structural modification of glycoprotein: impact of the ligand and the oxidants,” Biochemical and Biophysical Research Communications, vol. 285, no. 4, pp. 915–920, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Y. Shrivastava and B. U. Nair, “Protein degradation by peroxide catalyzed by chromium (III): role of coordinated ligand,” Biochemical and Biophysical Research Communications, vol. 270, no. 3, pp. 749–754, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Vijayalakshmi, V. Subramanian, and B. U. Nair, “A study of the interaction of Cr(III) complexes and their selective binding with B-DNA: a molecular modeling approach,” Journal of Biomolecular Structure and Dynamics, vol. 19, no. 6, pp. 1063–1071, 2002. View at Google Scholar · View at Scopus
  11. L. Joudah, S. Moghaddas, and R. N. Bose, “DNA oxidation by peroxo-chromium(v) species: oxidation of guanosine to guanidinohydantoin,” Chemical Communications, no. 16, pp. 1742–1743, 2002. View at Google Scholar · View at Scopus
  12. B. M. Zeglis, V. C. Pierre, and J. K. Barton, “Metallo-intercalators and metallo-insertors,” Chemical Communications, no. 44, pp. 4565–4579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. X.-W. Liu, J. Li, H. Li, K.-C. Zheng, H. Chao, and L.-N. Ji, “Synthesis, characterization, DNA-binding and photocleavage of complexes [Ru(phen)2(6-OH-dppz)]2+ and [Ru(phen)2(6- NO2-dppz)]2+,” Journal of Inorganic Biochemistry, vol. 99, no. 12, pp. 2372–2380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Toneatto, R. A. Boero, G. Lorenzatti, G. A. Argüello, and A. M. Cabanillas, “Binding and photocleavage properties of [Cr(phen)2(dppz)]3+ to DNA. Implications in Phototherapy,” Biocell, vol. 33, p. 64, 2009. View at Google Scholar
  15. J. Toneatto, G. Lorenzatti, A. M. Cabanillas, and G. A. Argüello, “Novel DNA photocleavage properties of [Cr(NN)3]3+ complexes,” Inorganic Chemistry Communications, vol. 15, pp. 43–46, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Toneatto, R. A. Boero, G. Lorenzatti, A. M. Cabanillas, and G. A. Argüello, “New insights in the DNA-[Cr(phen)2(dppz)]3+ binding and photocleavage properties by the complex with an intercalating ligand,” Journal of Inorganic Biochemistry, vol. 104, no. 7, pp. 697–703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Kamalakannan and D. Venkappayya, “Synthesis and characterization of cobalt and nickel chelates of 5-dimethylaminomethyl-2-thiouracil and their evaluation as antimicrobial and anticancer agents,” Journal of Inorganic Biochemistry, vol. 90, no. 1-2, pp. 22–37, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. S. Islam, M. A. Farooque, M. A. K. Bodruddoza, M. A. Mosaddik, and M. S. Alam, “Antimicrobial and toxicological studies of mixed ligand transition metal complexes of Schiff bases,” International Journal of Biological Sciences, vol. 2, pp. 797–799, 2002. View at Google Scholar
  19. C. Sultana, M. A. A. Rahman, M. A. A. Al-Bari et al., “In vitro Antimicrobial screening of three cadmium complexes and two addition compounds of antimony and arsenic,” Pakistan Journal of Biological Sciences, vol. 6, pp. 525–527, 2003. View at Google Scholar
  20. M. Shakir, P. Chingsubam, H.-T. Chishti, Y. Azim, and N. Begum, “Synthesis and physico-chemical studies on transition metal complexes of macrocyclic ligand derived from 2,6-diacetylpyridine dihydrazone,” Indian Journal of Chemistry A, vol. 43, no. 3, pp. 556–561, 2004. View at Google Scholar · View at Scopus
  21. D. P. Singh, R. Kumar, V. Malik, and P. Tyagi, “Template synthesis, spectroscopic studies and biological activities of macrocyclic complexes derived from thiocarbohydrazide and glyoxal,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 22, no. 2, pp. 177–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Cervantes, J. Campos-García, S. Devars et al., “Interactions of chromium with microorganisms and plants,” FEMS Microbiology Reviews, vol. 25, pp. 335–347, 2001. View at Google Scholar
  23. A. A. El-Asmy, O. A. El-Gammal, and H. A. Radwan, “Synthesis, characterization and biological study on Cr3+, ZrO2+, HfO2+ and UO2 complexes of oxalohydrazide and bis(3-hydroxyimino)butan-2-ylidene)-oxalohydrazide,” Spectrochimica Acta A, vol. 76, no. 5, pp. 496–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. V. Anantha Lakshmi, P. S. Reddy, and V. J. Raju, “Synthesis, characterization and antimicrobial activity of 3d transition metal complexes of a biambidentate ligand containing quinoxaline moiety,” Spectrochimica Acta A, vol. 74, no. 1, pp. 52–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Y. Shrivastava, S. N. Devaraj, and B. U. Nair, “A Schiff base complex of chromium(III): an efficient inhibitor for the pathogenic and invasive potential of Shigella dysenteriae,” Journal of Inorganic Biochemistry, vol. 98, no. 2, pp. 387–392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Sheikh, M. S. Houssain, M. S. Easmin, M. S. Islam, M. A. Houssain, and M. Rashid, “New coordination complexes of chromium as cytotoxic and antimicrobial agents,” Pakistan Journal of Biological Sciences, vol. 7, pp. 335–339, 2004. View at Google Scholar
  27. H. Y. Shrivastava, T. Ravikumar, N. Shanmugasundaram, M. Babu, and B. Unni Nair, “Cytotoxicity studies of chromium(III) complexes on human dermal fibroblasts,” Free Radical Biology and Medicine, vol. 38, no. 1, pp. 58–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. C. Becerra, M. Sarmiento, P. L. Páez, G. Argüello, and I. Albesa, “Light effect and reactive oxygen species in the action of ciprofloxacin on Staphylococcus aureus,” Journal of Photochemistry and Photobiology B, vol. 76, pp. 13–18, 2004. View at Google Scholar
  29. M. C. Becerra, P. L. Páez, L. E. Laróvere, and I. Albesa, “Lipids and DNA oxidation in Staphylococcus aureus as a consequence of oxidative stress generated by ciprofloxacin,” Molecular and Cellular Biochemistry, vol. 285, no. 1-2, pp. 29–34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. P. L. Páez, M. C. Becerra, and I. Albesa, “Antioxidative mechanisms protect resistant strains of Staphylococcus aureus against ciprofloxacin oxidative damage,” Fundamental and Clinical Pharmacology, vol. 24, no. 6, pp. 771–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. P. L. Páez, M. C. Becerra, and I. Albesa, “Comparison of macromolecular oxidation by reactive oxygen species in three bacterial genera exposed to different antibiotics,” Cell Biochemistry and Biophysics, vol. 61, no. 3, pp. 467–472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. E. Dickeson and L. A. Summers, “Derivatives of 1,10-phenanthroline-5,6-quinone,” Australian Journal of Chemistry, vol. 23, pp. 1023–1027, 1970. View at Google Scholar
  33. K. D. Barker, K. A. Barnett, S. M. Connell et al., “Synthesis and characterization of heteroleptic Cr(diimine)3 complexes,” Inorganica Chimica Acta, vol. 316, no. 1-2, pp. 41–49, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. Clinical and Laboratory Standards Institute, “Performance Standards for Antimicrobial Susceptibility Testing; 20th Informational Supplement; M100-S20 and M100 S20 Supplement,” Wayne, Pa, USA, EE.UU, 2010.
  35. G. M. Eliopoulos and R. C. Moellering Jr., “Antimicrobial combinations,” in Antibiotics in Laboratory Medicine, V. Lorian, Ed., pp. 432–492, Williams & Wilkins, Baltimore, Md, USA, 4th edition, 1996. View at Google Scholar
  36. G. Psomas, C. Dendrinou-Samara, P. Philippakopoulos et al., “CuII-herbicide complexes: structure and bioactivity,” Inorganica Chimica Acta, vol. 272, no. 1-2, pp. 24–32, 1998. View at Google Scholar · View at Scopus
  37. E. K. Efthimiadou, M. E. Katsarou, A. Karaliota, and G. Psomas, “Copper(II) complexes with sparfloxacin and nitrogen-donor heterocyclic ligands: structure-activity relationship,” Journal of Inorganic Biochemistry, vol. 102, no. 4, pp. 910–920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. S. Kumar and S. Arunachalam, “DNA binding and antimicrobial studies of polymer-copper(II) complexes containing 1,10-phenanthroline and l-phenylalanine ligands,” European Journal of Medicinal Chemistry, vol. 44, no. 5, pp. 1878–1883, 2009. View at Publisher · View at Google Scholar · View at Scopus