Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 914764, 6 pages
Research Article

Mechanical Strength and Biocompatibility of Ultrafine-Grained Commercial Purity Titanium

1Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, VIC 3800, Australia
2WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea

Received 3 April 2013; Accepted 6 June 2013

Academic Editor: Salvatore Sauro

Copyright © 2013 Yuri Estrin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The effect of grain refinement of commercial purity titanium by equal channel angular pressing (ECAP) on its mechanical performance and bone tissue regeneration is reported. In vivo studies conducted on New Zealand white rabbits did not show an enhancement of biocompatibility of ECAP-modified titanium found earlier by in vitro testing. However, the observed combination of outstanding mechanical properties achieved by ECAP without a loss of biocompatibility suggests that this is a very promising processing route to bioimplant manufacturing. The study thus supports the expectation that commercial purity titanium modified by ECAP can be seen as an excellent candidate material for bone implants suitable for replacing conventional titanium alloy implants.