Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 918548, 8 pages
http://dx.doi.org/10.1155/2013/918548
Clinical Study

Influence of Positive End-Expiratory Pressure on Myocardial Strain Assessed by Speckle Tracking Echocardiography in Mechanically Ventilated Patients

1Department of Medical Biotechnologies, Unit of Intensive Care Medicine, University of Siena, Viale Bracci 10, 53100 Siena, Italy
2Department of Medical Biotechnologies, Unit of Cardiology, University of Siena, Viale Bracci, 53100 Siena, Italy
3Department of Intensive Care, Erasme University Hospital, Route de Lennik, 800-1070 Brussels, Belgium

Received 30 April 2013; Revised 27 July 2013; Accepted 30 July 2013

Academic Editor: Michael Gotzmann

Copyright © 2013 Federico Franchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Au and A. Vieillard-Baron, “Bedside echocardiography in critically ill patients: a true hemodynamic monitoring tool,” Journal of Clinical Monitoring and Computing, vol. 26, no. 5, pp. 355–360, 2012. View at Google Scholar
  2. M. R. Pinsky, “Cardiovascular issues in respiratory care,” Chest, vol. 128, pp. 592S–597S, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. F. J. Romero-Bermejo, M. Ruiz-Bailén, M. Guerrero-De-Mier, and J. López-Álvaro, “Echocardiographic hemodynamic monitoring in the critically ill patient,” Current Cardiology Reviews, vol. 7, no. 3, pp. 146–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Brochard, G. S. Martin, L. Blanch et al., “Clinical review: respiratory monitoring in the ICU—a consensus of 16,” Critical Care, vol. 16, no. 2, article 219, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Feltracco, G. Biancofiore, C. Ori, F. H. Saner, and G. della Rocca, “Limits and pitfalls of haemodynamic monitoring systems in liver transplantation surgery,” Minerva Anestesiologica, vol. 78, pp. 1372–1384, 2012. View at Google Scholar
  6. P. Vignon, “Hemodynamic assessment of critically ill patients using echocardiography Doppler,” Current Opinion in Critical Care, vol. 11, no. 3, pp. 227–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Perk, P. A. Tunick, and I. Kronzon, “Non-Doppler two-dimensional strain imaging by echocardiography-from technical considerations to clinical applications,” Journal of the American Society of Echocardiography, vol. 20, no. 3, pp. 234–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Mondillo, M. Galderisi, D. Mele et al., “Speckle-tracking echocardiography: a new technique for assessing myocardial function,” Journal of Ultrasound in Medicine, vol. 30, no. 1, pp. 71–83, 2011. View at Google Scholar · View at Scopus
  9. B. M. van Dalen, O. I. I. Soliman, W. B. Vletter et al., “Feasibility and reproducibility of left ventricular rotation parameters measured by speckle tracking echocardiography,” European Journal of Echocardiography, vol. 10, no. 5, pp. 669–676, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Bhavsar, E. Sloth, L. Folkersen, J. R. Greisen, and C.-J. Jakobsen, “Sufentanil preserves hemodynamics and left ventricular function in patients with ischemic heart disease,” Acta Anaesthesiologica Scandinavica, vol. 55, no. 8, pp. 1002–1009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Kroijer, N. Eldrup, W. P. Paaske, P. Torp, K. Sivesgaard, and E. Sloth, “Left ventricular longitudinal strain for perioperative cardiac monitoring in aortic aneurysm surgery using transthoracic 2-dimensional echocardiography: a feasibility and repeatability study,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 24, no. 1, pp. 37–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. E. Marcucci, Z. Samad, J. Rivera et al., “A comparative evaluation of transesophageal and transthoracic echocardiography for measurement of left ventricular systolic strain using speckle tracking,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 26, no. 1, pp. 17–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. C. A. Frederiksen, P. Juhl-Olsen, C. Jakobsen, and E. Sloth, “Echocardiographic evaluation of systolic and diastolic function: a preoperative study of correlation with serum NT-proBNP,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 26, no. 2, pp. 197–203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Cameli, M. Lisi, F. M. Righini et al., “Speckle tracking echocardiography as a new technique to evaluate right ventricular function in patients with left ventricular assist device therapy,” The Journal of Heart and Lung Transplantation, vol. 32, pp. 424–430, 2013. View at Google Scholar
  15. M. Cameli, M. Caputo, S. Mondillo et al., “Feasibility and reference values of left atrial longitudinal strain imaging by two-dimensional speckle tracking,” Cardiovascular Ultrasound, vol. 7, no. 1, article 6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Padeletti, M. Cameli, M. Lisi, A. Malandrino, V. Zacã, and S. Mondillo, “Reference values of right atrial longitudinal strain imaging by two-dimensional speckle tracking,” Echocardiography, vol. 29, no. 2, pp. 147–152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Franchi, E. Falciani, K. Donadello et al., “Echocardiography and pulse contour analysis to assess cardiac output in trauma patients,” Minerva Anestesiologica, vol. 79, pp. 137–146, 2013. View at Google Scholar
  18. F. Franchi, R. Silvestri, L. Cubattoli et al., “Comparison between an uncalibrated pulse contour method and thermodilution technique for cardiac output estimation in septic patients,” British Journal of Anaesthesia, vol. 107, no. 2, pp. 202–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Scolletta, L. Bodson, K. Donadello et al., “Assessment of left ventricular function by pulse wave analysis in critically ill patients,” Intensive Care Medicine, vol. 39, no. 6, pp. 1025–1033, 2013. View at Google Scholar
  20. R. M. Lang, M. Bierig, R. B. Devereux et al., “Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology,” Journal of the American Society of Echocardiography, vol. 18, no. 12, pp. 1440–1463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Quiñones, C. M. Otto, M. Stoddard, A. Waggoner, and W. A. Zoghbi, “Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography,” Journal of the American Society of Echocardiography, vol. 15, no. 2, pp. 167–184, 2002. View at Google Scholar · View at Scopus
  22. S. Mondillo, M. Galderisi, P. Ballo, and P. N. Marino, “Left ventricular systolic longitudinal function: comparison among simple M-mode, pulsed and M-mode color tissue Doppler of mitral annulus in healthy individuals,” Journal of the American Society of Echocardiography, vol. 19, no. 9, pp. 1085–1091, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. L. G. Rudski, W. W. Lai, J. Afilalo et al., “Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography,” Journal of the American Society of Echocardiography, vol. 23, no. 7, pp. 685–713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Serri, P. Reant, M. Lafitte et al., “Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy,” Journal of the American College of Cardiology, vol. 47, no. 6, pp. 1175–1181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. D'Hooge, A. Heimdal, F. Jamal et al., “Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations,” European Journal of Echocardiography, vol. 1, no. 3, pp. 154–170, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Dalen, A. Thorstensen, S. A. Aase et al., “Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: the HUNT study in Norway,” European Journal of Echocardiography, vol. 11, no. 2, pp. 176–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Monnet, M. Dres, A. Ferre et al., “Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices,” British Journal of Anaesthesia, vol. 109, no. 3, pp. 330–338, 2012. View at Google Scholar
  28. J. R. C. Jansen, J. J. Schreuder, J. P. Mulier, N. T. Smith, J. J. Settels, and K. H. Wesseling, “A comparison of cardiac output derived from the arterial pressure wave against thermodilution in cardiac surgery patients,” British Journal of Anaesthesia, vol. 87, no. 2, pp. 212–222, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. J.-M. Schmitt, A. Vieillard-Baron, R. Augarde, S. Prin, B. Page, and F. Jardin, “Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements,” Critical Care Medicine, vol. 29, no. 6, pp. 1154–1158, 2001. View at Google Scholar · View at Scopus
  30. T. Luecke and P. Pelosi, “Clinical review: positive end-expiratory pressure and cardiac output,” Critical Care, vol. 9, no. 6, pp. 607–621, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Fougères, J. Teboul, C. Richard, D. Osman, D. Chemla, and X. Monnet, “Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status,” Critical Care Medicine, vol. 38, no. 3, pp. 802–807, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. W. Biondi, D. S. Schulman, R. Soufer et al., “The effect of incremental positive end-expiratory pressure on right ventricular hemodynamics and ejection fraction,” Anesthesia and Analgesia, vol. 67, no. 2, pp. 144–151, 1988. View at Google Scholar · View at Scopus
  33. C. Gernoth, G. Wagner, P. Pelosi, and T. Luecke, “Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome,” Critical Care, vol. 13, no. 2, article R59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Huemer, N. Kolev, A. Kurz, and M. Zimpfer, “Influence of positive end-expiratory pressure on right and left ventricular performance assessed by Doppler two-dimensional echocardiography,” Chest, vol. 106, no. 1, pp. 67–73, 1994. View at Google Scholar · View at Scopus
  35. N. A. Bayram, B. Ciftci, H. Bayram et al., “Effects of continuous positive airway pressure therapy on right ventricular function assessment by tissue Doppler imaging in patients with obstructive sleep apnea syndrome,” Echocardiography, vol. 25, no. 10, pp. 1071–1078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Haruki, M. Takeuchi, Y. Kanazawa et al., “Continuous positive airway pressure ameliorates sleep-induced subclinical left ventricular systolic dysfunction: demonstration by two-dimensional speckle-tracking echocardiography,” European Journal of Echocardiography, vol. 11, no. 4, pp. 352–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. C. Kubitz, T. Annecke, R. Hinkel et al., “Positive end-expiratory pressure does not compromise myocardial contractility in myocardial ischemia/reperfusion,” Shock, vol. 27, no. 6, pp. 638–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. E. Berglund, E. Halden, S. Jakobson, and J. Landelius, “Echocardiographic analysis of cardiac function during high PEEP ventilation,” Intensive Care Medicine, vol. 20, no. 3, pp. 174–180, 1994. View at Google Scholar · View at Scopus
  39. P. van Trigt, T. L. Spray, and M. K. Pasque, “The effect of PEEP on left ventricular diastolic dimensions and systolic performance following myocardial revascularization,” Annals of Thoracic Surgery, vol. 33, no. 6, pp. 585–592, 1982. View at Google Scholar · View at Scopus
  40. J. Meluzin, L. Spinarova, P. Hude et al., “Estimation of left ventricular filling pressures by speckle tracking echocardiography in patients with idiopathic dilated cardiomyopathy,” European Journal of Echocardiography, vol. 12, no. 1, pp. 11–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. A. D. Grant, N. G. Smedira, R. C. Starling, and T. H. Marwick, “Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation,” Journal of the American College of Cardiology, vol. 60, no. 6, pp. 521–528, 2012. View at Google Scholar
  42. F. Franchi, F. S. Taccone, K. Donadello, V. Zacã, and S. Scolletta, “Author reply to: can transthoracic echocardiography be used as a reference method for cardiac output measurement?” Minerva Anestesiologica, vol. 79, no. 5, pp. 572–573, 2013. View at Google Scholar