Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 926584, 8 pages
http://dx.doi.org/10.1155/2013/926584
Research Article

Deposition of Doxorubicin in Rats following Administration of Three Newly Synthesized Doxorubicin Conjugates

1Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaan’xi 710032, China
2Department of Obstetrics & Gynecology, PLA General Hospital, Beijing 100853, China
3Department of Clinic Pharmacology, Wuhan General Hospital of Guangzhou Military Area Command, Wuhan, Hubei 430070, China
4Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaan’xi 710038, China
5Department of Radiation Medicine, School of Public Health, Fourth Military Medical University, Xi’an, Shaan’xi 710032, China
6Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaan’xi 710032, China

Received 1 October 2013; Accepted 3 November 2013

Academic Editor: Peng Zhang

Copyright © 2013 Menglei Huan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Legigan, J. Clarhaut, B. Renoux et al., “Synthesis and antitumor efficacy of a b-glucuronidase-responsive albumin-binding prodrug of doxorubicin,” Journal of Medicinal Chemistry, vol. 55, no. 9, pp. 4516–4520, 2012. View at Publisher · View at Google Scholar
  2. S. F. Taveira, L. M. Araújo, D. C. de Santana, A. Nomizo, L. A. de Freitas, and R. F. Lopez, “Development of cationic solid lipid nanoparticles with factorial design-based studies for topical administration of doxorubicin,” Journal of Biomedical Nanotechnology, vol. 8, no. 2, pp. 219–228, 2012. View at Publisher · View at Google Scholar
  3. E. Pujade-Lauraine, U. Wagner, E. Aavall-Lundqvist et al., “Pegylated liposomal doxorubicin and carboplatin compared with paclitaxel and carboplatin for patients with platinum-sensitive ovarian cancer in late relapse,” Journal of Clinical Oncology, vol. 28, no. 20, pp. 3323–3329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Huang, Z. Tang, Y. Zhou et al., “Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy,” International Journal of Pharmaceutics, vol. 429, no. 1-2, pp. 113–122, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. C. Barenholz, “Doxil—the first FDA-approved nano-drug: lessons learned,” Journal of Controlled Release, vol. 160, no. 2, pp. 117–134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. C. Chen, L. C. Liao, P. L. Lu et al., “The accumulation of dual pH and temperature responsive micelles in tumors,” Biomaterials, vol. 33, no. 18, pp. 4576–4588, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Z. Du, L. Wang, H. Yuan, and F. Q. Hu, “Linoleic acid-grafted chitosan oligosaccharide micelles for intracellular drug delivery and reverse drug resistance of tumor cells,” International Journal of Biological Macromolecules, vol. 48, no. 1, pp. 215–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Ai, J. Duan, X. Liu, S. Bock, Y. Tian, and Z. Huang, “Biological evaluation of a novel doxorubicin-peptide conjugate for targeted delivery to EGF receptor-overexpressing tumor cells,” Molecular Pharmaceutics, vol. 8, no. 2, pp. 375–386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Tan, K. G. Neoh, E. T. Kang, W. S. Choe, and X. Su, “PEGylated anti-MUC1 aptamer-doxorubicin complex for targeted drug delivery to MCF7 breast cancer cells,” Macromolecular Bioscience, vol. 11, no. 10, pp. 1331–1335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. R. P. Collea, F. W. Kruter, J. E. Cantrell et al., “Pegylated liposomal doxorubicin plus carboplatin in patients with metastatic breast cancer: a phase II study,” Annals of Oncology, vol. 23, no. 10, pp. 2599–2605, 2012. View at Publisher · View at Google Scholar
  11. K. Alhareth, C. Vauthier, C. Gueutin, G. Ponchel, and F. Moussa, “HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly(alkylcyanoacrylate) nanoparticles,” Journal of Chromatography B, vol. 887-888, pp. 128–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. N. V. Rusetskaya, N. Khariton, O. V. Yurchenko, and V. F. Chekhun, “Distribution and accumulation of liposomal form of doxorubicin in breast cancer cells of MCF-7 line,” Experimental Oncology, vol. 33, no. 2, pp. 78–82, 2011. View at Google Scholar · View at Scopus
  13. P. Krumpochova, A. Kocurova, P. Dolezel, and P. Mlejnek, “Assay for determination of daunorubicin in cancer cells with multidrug resistance phenotype,” Journal of Chromatography B, vol. 879, no. 21, pp. 1875–1880, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Nödler, T. Licha, K. Bester, and M. Sauter, “Development of a multi-residue analytical method, based on liquid chromatography-tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples,” Journal of Chromatography A, vol. 1217, no. 42, pp. 6511–6521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. L. Huan, S. Y. Zhou, Z. H. Teng et al., “Conjugation with α-linolenic acid improves cancer cell uptake and cytotoxicity of doxorubicin,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 9, pp. 2579–2584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Huan, H. Cui, Z. Teng et al., “In vivo antitumor activity of a new doxorubicin conjugate via α-linolenic acid,” Bioscience, Biotechnology, and Biochemistry, vol. 76, no. 8, pp. 1577–1579, 2012. View at Publisher · View at Google Scholar
  17. M. Huan, B. Zhang, Z. Teng et al., “In vitro and in vivo antitumor activity of a novel pH-activated polymeric drug delivery system for doxorubicin,” PLoS ONE, vol. 7, no. 9, Article ID e44116, 2012. View at Google Scholar
  18. Y. C. Wong, S. K. Wo, and Z. Zuo, “Investigation of the disposition of loxapine, amoxapine and their hydroxylated metabolites in different brain regions, CSF and plasma of rat by LC-MS/MS,” Journal of Pharmaceutical and Biomedical Analysis, vol. 58, no. 1, pp. 83–93, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zhao, C. Su, C. Yang et al., “Determination of ginsenosides Rb1, Rb2, and Rb3 in rat plasma by a rapid and sensitive liquid chromatography tandem mass spectrometry method: application in a pharmacokinetic study,” Journal of Pharmaceutical and Biomedical Analysis, vol. 64-65, pp. 94–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. P. M. Loadman, M. C. Bibby, J. A. Double, W. M. Al-Shakhaa, and R. Duncan, “Pharmacokinetics of PK1 and doxorubicin in experimental colon tumor models with differing responses to PK1,” Clinical Cancer Research, vol. 5, no. 11, pp. 3682–3688, 1999. View at Google Scholar · View at Scopus
  21. S. Zhu, M. Hong, G. Tang et al., “Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: the effects of PEGylation degree and drug conjugation style,” Biomaterials, vol. 31, no. 6, pp. 1360–1371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Etrych, L. Kovář, J. Strohalm, P. Chytil, B. Říhová, and K. Ulbrich, “Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy,” Journal of Controlled Release, vol. 154, no. 3, pp. 241–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Zhang, Y. Shi, Y. Chen, J. Ye, X. Sha, and X. Fang, “Multifunctional pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors,” Biomaterials, vol. 32, no. 11, pp. 2894–2906, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. H. Jin, H. Y. Hu, M. X. Qiao et al., “PH-sensitive chitosan-derived nanoparticles as doxorubicin carriers for effective anti-tumor activity: preparation and in vitro evaluation,” Colloids and Surfaces B, vol. 94, pp. 184–191, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Q. Hu, L. N. Liu, Y. Z. Du, and H. Yuan, “Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles,” Biomaterials, vol. 30, no. 36, pp. 6955–6963, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Jin, W. Yang, L. Bai, J. Wang, and K. Dou, “Preparation and characterization of targeted DOX-PLGA-PEG micelles decorated with bivalent fragment HAb18 F(ab′)2 for treatment of hepatocellular carcinoma,” Journal of Controlled Release, vol. 152, supplement 1, pp. e14–e15, 2011. View at Google Scholar
  27. S. R. Paliwal, R. Paliwal, H. C. Pal et al., “Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy,” Molecular Pharmaceutics, vol. 9, no. 1, pp. 176–186, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. I. P. Huang, S. P. Sun, S. H. Cheng et al., “Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance,” Molecular Cancer Therapeutics, vol. 10, no. 5, pp. 761–769, 2011. View at Publisher · View at Google Scholar · View at Scopus