Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 930876, 8 pages
Research Article

The Assessment of Proteus mirabilis Susceptibility to Ceftazidime and Ciprofloxacin and the Impact of These Antibiotics at Subinhibitory Concentrations on Proteus mirabilis Biofilms

Department of Microbiology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, M. Skłodowskiej-Curie 9, 85-094 Bydgoszcz, Poland

Received 29 April 2013; Accepted 13 August 2013

Academic Editor: Xin-yuan Guan

Copyright © 2013 Joanna Kwiecińska-Piróg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Rods of the Proteus genus are commonly isolated from patients, especially from the urinary tracts of the catheterised patients. The infections associated with biomaterials are crucial therapeutic obstacles, due to the bactericidal resistance of the biofilm. The aim of this study was to assess the susceptibility of P. mirabilis planktonic forms to ciprofloxacin and ceftazidime, the ability to form biofilm, and the impact of chosen sub-MIC concentrations of these antibiotics on biofilm at different stages of its formation. The research included 50 P. mirabilis strains isolated from wounds and the urinary tracts from patients of the University Hospital No. 1 in Bydgoszcz. The assessment of susceptibility to ciprofloxacin and ceftazidime was conducted using micromethods. The impact of sub-MIC concentrations of the chosen antibiotics on the biofilm was measured using the TTC method. The resistance to ciprofloxacin was confirmed for 20 strains (40.0%) while to ceftazidime for 32 (64.0%) of the tested P. mirabilis strains. All of the tested strains formed biofilm: 24.0% weakly, 26.0% moderately, and 50.0% strongly. It was determined that ciprofloxacin and ceftazidime caused eradication of the biofilm. Moreover, the connection between origin of the strains, biofilm maturity level, and resistance to antibiotics was proved.