Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 931741, 6 pages
http://dx.doi.org/10.1155/2013/931741
Research Article

Development of a Detailed Volumetric Finite Element Model of the Spine to Simulate Surgical Correction of Spinal Deformities

Spinologics Inc., 289 Desaulniers, Saint-Lambert, QC, Canada J4P 1M8

Received 10 April 2013; Revised 18 July 2013; Accepted 18 July 2013

Academic Editor: Panagiotis Korovessis

Copyright © 2013 Mark Driscoll et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Villemure, C.-E. Aubin, G. Grimard, J. Dansereau, and H. Labelle, “Progression of vertebral and spinal three-dimensional deformities in adolescent idiopathic scoliosis: a longitudinal study,” Spine, vol. 26, no. 20, pp. 2244–2250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Villemure, C.-É. Aubin, J. Dansereau, and H. Labelle, “Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation,” Journal of Biomechanical Engineering, vol. 124, no. 6, pp. 784–790, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. A.-M. Huynh, C.-E. Aubin, T. Rajwani, K. M. Bagnall, and I. Villemure, “Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study,” European Spine Journal, vol. 16, no. 4, pp. 523–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Huynh, C. E. Aubin, P. A. Mathieu, and H. Labelle, “Simulation of progressive spinal deformities in Duchenne muscular dystrophy using a biomechanical model integrating muscles and vertebral growth modulation,” Clinical Biomechanics, vol. 22, no. 4, pp. 392–399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Driscoll, C.-E. Aubin, A. Moreau, I. Villemure, and S. Parent, “The role of spinal concave-convex biases in the progression of idiopathic scoliosis,” European Spine Journal, vol. 18, no. 2, pp. 180–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Sevrain, C.-E. Aubin, H. Gharbi, X. Wang, and H. Labelle, “Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study,” Scoliosis, vol. 7, no. 1, article 2, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Clin, C.-E. Aubin, S. Parent, and H. Labelle, “A biomechanical study of the charleston brace for the treatment of scoliosis,” Spine, vol. 35, no. 19, pp. E940–E947, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Clin, C.-E. Aubin, S. Parent, A. Sangole, and H. Labelle, “Comparison of the biomechanical 3D efficiency of different brace designs for the treatment of scoliosis using a finite element model,” European Spine Journal, vol. 19, no. 7, pp. 1169–1178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Clin, C.-É. Aubin, A. Sangole, H. Labelle, and S. Parent, “Correlation between immediate in-brace correction and biomechanical effectiveness of brace treatment in adolescent idiopathic scoliosis,” Spine, vol. 35, no. 18, pp. 1706–1713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. M. Lalonde, C. E. Aubin et al., “Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis: preliminary results,” Studies in Health Technology and Informatics, vol. 140, pp. 111–115, 2008. View at Google Scholar
  11. M. Driscoll, C.-E. Aubin, A. Moreau, and S. Parent, “Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis,” Medical and Biological Engineering and Computing, vol. 49, no. 12, pp. 1437–1445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C.-E. Aubin, Y. Petit, I. A. Stokes, F. Poulin, M. Gardner-Morse, and H. Labelle, “Biomechanical modeling of posterior instrumentation of the scoliotic spine,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 6, no. 1, pp. 27–32, 2003. View at Google Scholar · View at Scopus
  13. X. Wang, C.-E. Aubin, D. Crandall, and H. Labelle, “Biomechanical comparison of force levels in spinal instrumentation using monoaxial versus multi degree of freedom postloading pedicle screws,” Spine, vol. 36, no. 2, pp. E95–E104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Lafage, J. Dubousset, F. Lavaste, and W. Skalli, “3D finite element simulation of Cotrel-Dubousset correction,” Computer Aided Surgery, vol. 9, no. 1-2, pp. 17–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Dumas, V. Lafage, Y. Lafon, J.-P. Steib, D. Mitton, and W. Skalli, “Finite element simulation of spinal deformities correction by in situ contouring technique,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 8, no. 5, pp. 331–337, 2005. View at Google Scholar · View at Scopus
  16. Y. Lafon, J.-P. Steib, and W. Skalli, “Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model,” Spine, vol. 35, no. 4, pp. 453–459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Delorme, S. Y. Petit, J. A. de Guise, H. Labelle, C.-É. Aubin, and J. Dansereau, “Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 8, pp. 989–998, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. P.-L. Sylvestre, I. Villemure, and C.-É. Aubin, “Finite element modeling of the growth plate in a detailed spine model,” Medical and Biological Engineering and Computing, vol. 45, no. 10, pp. 977–988, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Pintar, Biomechanics of Spinal Element [Doctorate thesis], Marquette University, Milwaukee, Wis, USA, 1986.
  20. C.-C. Hsu, C.-K. Chao, J.-L. Wang, S.-M. Hou, Y.-T. Tsai, and J. Lin, “Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses,” Journal of Orthopaedic Research, vol. 23, no. 4, pp. 788–794, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Kilinçer, S. Inceoglu, M. J. Sohn, L. A. Ferrara, and E. C. Benzel, “Effects of angle and laminectomy on triangulated pedicle screws,” Journal of Clinical Neuroscience, vol. 14, no. 12, pp. 1186–1191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Hashemi, D. Bednar, and S. Ziada, “Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study,” Spine Journal, vol. 9, no. 5, pp. 404–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Adams, C. McNally, and P. Dolan, “‘Stress’ distribution inside intervertebral discs: the effects of age and degeneration,” Journal of Bone and Joint Surgery, vol. 78, no. 6, pp. 965–972, 1996. View at Google Scholar
  24. H. J. Wilke, P. Neef, M. Caimi, T. Hoogland, and L. E. Claes, “New in vivo measurements of pressures in the intervertebral disc in daily life,” Spine, vol. 24, no. 8, pp. 755–762, 1999. View at Google Scholar
  25. A. Schultz, G. Andersson, R. Ortengren, K. Haderspeck, and A. Nachemson, “Loads on the lumbar spine. Validation of a biomechanical analysis by measurement of intradiscal pressures and myoelectric signals,” Journal of Bone and Joint Surgery, vol. 64, no. 5, pp. 713–720, 1982. View at Google Scholar
  26. A. Nachemson, “In vivo discometry in lumbar discs with irregular nucleograms. Some differences in stress distribution between normal and moderatly degenerated discs,” Acta Orthopaedica Scandinavica, vol. 36, no. 4, pp. 418–434, 1965. View at Google Scholar
  27. B. J. Andersson, R. Ortengren, A. Nachemson, and G. Elfström, “Lumbar disc pressure and myoelectric back muscle activity during sitting. I. Studies on an experimental chair,” Scandinavian Journal of Rehabilitation Medicine, vol. 6, no. 3, pp. 122–127, 1974. View at Google Scholar
  28. A. Meir, J. C. T. Fairbank, D. A. Jones, D. S. McNally, and J. P. G. Urban, “High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading,” Scoliosis, vol. 2, article 4, 2007. View at Google Scholar
  29. K. Sato, S. Kikuchi, and T. Yonezawa, “In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems,” Spine, vol. 24, no. 23, pp. 2468–2474, 1999. View at Google Scholar
  30. D. M. Skrzypiec, P. Pollintine, A. Przybyla, P. Dolan, and M. A. Adams, “The internal mechanical properties of cervical intervertebral discs as revealed by stress profilometry,” European Spine Journal, vol. 16, no. 10, pp. 1701–1709, 2007. View at Google Scholar
  31. T. Steffen, H. G. Baramki, R. Rubin, J. Antoniou, and M. Aebi, “Lumbar intradiscal pressure measured in the anterior and posterolateral annular regions during asymmetrical loading,” Clinical Biomechanics, vol. 13, no. 7, pp. 495–505, 1998. View at Google Scholar
  32. Y. Schroeder, W. Wilson, J. M. Huyghe, and F. P. Baaijens, “Osmoviscoelastic finite element model of the intervertebral disc,” European Spine Journal, vol. 15, pp. S361–S371, 2006. View at Google Scholar