Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 937986, 12 pages
Clinical Study

The Effect of Bedding System Selected by Manual Muscle Testing on Sleep-Related Cardiovascular Functions

1Institute of Brain Science, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan
2Sleep Research Center, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan
3Department of Education and Research, Taipei City Hospital, No. 145, Zhengzhou Rd., Datong Dist., Taipei 103, Taiwan

Received 1 August 2013; Revised 30 September 2013; Accepted 17 October 2013

Academic Editor: Abel Romero-Corral

Copyright © 2013 Terry B. J. Kuo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background. Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. Methods. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant’s home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Results and Conclusion. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT.