Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 964034, 7 pages
http://dx.doi.org/10.1155/2013/964034
Research Article

In Vivo Evidence of Increased nNOS Activity in Acute MPTP Neurotoxicity: A Functional Pharmacological MRI Study

1Institute of Biomedical Sciences, Academia Sinica, 128 Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
2Department of Medical Imaging and Intervention, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan
3School of Nursing, Queen’s University, Kingston, ON, Canada K7L 3N6
4Department of Microbiology and Immunology, Chang-Gung University, Taoyuan 33302, Taiwan

Received 13 January 2013; Revised 21 July 2013; Accepted 1 August 2013

Academic Editor: Tomio Inoue

Copyright © 2013 Tiing Yee Siow et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Langston, I. Irwin, E. B. Langston, and L. S. Forno, “1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra,” Neuroscience Letters, vol. 48, no. 1, pp. 87–92, 1984. View at Google Scholar · View at Scopus
  2. J. A. Javitch and S. H. Snyder, “Uptake of MPP(+) by dopamine neurons explains selectivity of Parkinsonism-inducing neurotoxin, MPTP,” European Journal of Pharmacology, vol. 106, no. 2, pp. 455–456, 1984. View at Google Scholar · View at Scopus
  3. V. G. Desai, R. J. Feuers, R. W. Hart, and S. F. Ali, “MPP+-induced neurotoxicity in mouse is age-dependent: evidenced by the selective inhibition of complexes of electron transport,” Brain Research, vol. 715, no. 1-2, pp. 1–8, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. J. B. Schulz, D. R. Henshaw, R. T. Matthews, and M. F. Beal, “Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity,” Experimental Neurology, vol. 132, no. 2, pp. 279–283, 1995. View at Google Scholar · View at Scopus
  5. R. R. Ramsay, J. I. Salach, and T. P. Singer, “Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+,” Biochemical and Biophysical Research Communications, vol. 134, no. 2, pp. 743–748, 1986. View at Google Scholar · View at Scopus
  6. R. R. Ramsay, J. Dadgar, A. Trevor, and T. P. Singer, “Energy-driven uptake of N-methyl-4-phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP,” Life Sciences, vol. 39, no. 7, pp. 581–588, 1986. View at Google Scholar · View at Scopus
  7. W. J. Nicklas, S. K. Youngster, M. V. Kindt, and R. E. Heikkila, “MPTP, MPP+ and mitochondrial function,” Life Sciences, vol. 40, no. 8, pp. 721–729, 1987. View at Google Scholar · View at Scopus
  8. Y. Mizuno, N. Sone, and T. Saitoh, “Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain,” Journal of Neurochemistry, vol. 48, no. 6, pp. 1787–1793, 1987. View at Google Scholar · View at Scopus
  9. G. P. Davey and J. B. Clark, “Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria,” Journal of Neurochemistry, vol. 66, no. 4, pp. 1617–1624, 1996. View at Google Scholar · View at Scopus
  10. P. Chan, L. E. DeLanney, I. Irwin, J. W. Langston, and D. di Monte, “Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain,” Journal of Neurochemistry, vol. 57, no. 1, pp. 348–351, 1991. View at Google Scholar · View at Scopus
  11. J. B. Schulz, R. T. Matthews, B. G. Jenkins et al., “Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo,” Journal of Neuroscience, vol. 15, no. 12, pp. 8419–8429, 1995. View at Google Scholar · View at Scopus
  12. J. B. Schulz, R. T. Matthews, T. Klockgether, J. Dichgans, and M. F. Beal, “The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases,” Molecular and Cellular Biochemistry, vol. 174, no. 1-2, pp. 193–197, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Ara, S. Przedborski, A. B. Naini et al., “Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7659–7663, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Spencer Smith, R. H. Swerdlow, W. Davis Parker Jr., and J. P. Bennett Jr., “Reduction of MPP+-induced hydroxyl radica formation and nigrostriatal MPTP toxicity by inhibiting nitric oxide synthase,” NeuroReport, vol. 5, no. 18, pp. 2598–2600, 1994. View at Google Scholar · View at Scopus
  15. S. Przedborski, V. Jackson-Lewis, R. Yokoyama, T. Shibata, V. L. Dawson, and T. M. Dawson, “Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 10, pp. 4565–4571, 1996. View at Google Scholar · View at Scopus
  16. J. Garthwaite, S. L. Charles, and R. Chess-Williams, “Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain,” Nature, vol. 336, no. 6197, pp. 385–388, 1988. View at Google Scholar · View at Scopus
  17. N. Hogg, V. M. Darley-Usmar, M. T. Wilson, and S. Moncada, “Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide,” Biochemical Journal, vol. 281, no. 2, pp. 419–424, 1992. View at Google Scholar · View at Scopus
  18. T. S. Hakim, K. Sugimori, E. M. Camporesi, and G. Andersen, “Half-life of nitric oxide in aqueous solutions with and without haemoglobin,” Physiological Measurement, vol. 17, no. 4, pp. 267–277, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Moncada, R. M. J. Palmer, and E. A. Higgs, “Nitric oxide: physiology, pathophysiology, and pharmacology,” Pharmacological Reviews, vol. 43, no. 2, pp. 109–142, 1991. View at Google Scholar · View at Scopus
  20. V. Bauer and R. Sotníková, “Nitric oxide: the endothelium-derived relaxing factor and its role in endothelial functions,” General Physiology and Biophysics, vol. 29, no. 4, pp. 319–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S.-G. Kim, “Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping,” Magnetic Resonance in Medicine, vol. 34, no. 3, pp. 293–301, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. R. A. Leslie and M. F. James, “Pharmacological magnetic resonance imaging: a new application for functional MRI,” Trends in Pharmacological Sciences, vol. 21, no. 8, pp. 314–318, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Easton, F. H. Marshall, C. A. Marsden, and K. C. F. Fone, “Mapping the central effects of methylphenidate in the rat using pharmacological MRI BOLD contrast,” Neuropharmacology, vol. 57, no. 7-8, pp. 653–664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Martin and N. R. Sibson, “Pharmacological MRI in animal models: a useful tool for 5-HT research?” Neuropharmacology, vol. 55, no. 6, pp. 1038–1047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. J. Southan and C. Szabó, “Selective pharmacological inhibition of distinct nitric oxide synthase isoforms,” Biochemical Pharmacology, vol. 51, no. 4, pp. 383–394, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. W. T. Lee, H. S. Yin, and Y. Z. Shen, “The mechanisms of neuronal death produced by mitochondrial toxin 3-nitropropionic acid: the roles of N-methyl-D-aspartate glutamate receptors and mitochondrial calcium overload,” Neuroscience, vol. 112, no. 3, pp. 707–716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. G. M. Mackenzie, M. J. Jackson, P. Jenner, and C. D. Marsden, “Nitric oxide synthase inhibition and MPTP-induced toxicity in the common marmoset,” Synapse, vol. 26, pp. 301–316, 1997. View at Google Scholar
  28. P. Herscovitch and M. E. Raichle, “What is the correct value for the brain-blood partition coefficient for water?” Journal of Cerebral Blood Flow and Metabolism, vol. 5, no. 1, pp. 65–69, 1985. View at Google Scholar · View at Scopus
  29. N. V. Tsekos, F. Zhang, H. Merkle, M. Nagayama, C. Iadecola, and S.-G. Kim, “Quantitative measurements of cerebral blood flow in rats using the FAIR technique: correlation with previous iodoantipyrine autoradiographic studies,” Magnetic Resonance in Medicine, vol. 39, no. 4, pp. 564–573, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. J. B. Schulz, R. T. Matthews, M. M. K. Muqit, S. E. Browne, and M. F. Beal, “Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice,” Journal of Neurochemistry, vol. 64, no. 2, pp. 936–939, 1995. View at Google Scholar · View at Scopus
  31. T. Dehmer, J. Lindenau, S. Haid, J. Dichgans, and J. B. Schulz, “Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo,” Journal of Neurochemistry, vol. 74, no. 5, pp. 2213–2216, 2000. View at Google Scholar · View at Scopus
  32. G. T. Liberatore, V. Jackson-Lewis, S. Vukosavic et al., “Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease,” Nature Medicine, vol. 5, no. 12, pp. 1403–1409, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Degirmenci, M. Yaman, A. Haktanir, R. Albayrak, M. Acar, and G. Caliskan, “The effects of levodopa use on diffusion coefficients in various brain regions in Parkinson's disease,” Neuroscience Letters, vol. 416, no. 3, pp. 294–298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Federico, I. L. Simone, V. Lucivero et al., “Proton magnetic resonance spectroscopy in Parkinson's disease and atypical parkinsonian disorders,” Movement Disorders, vol. 12, no. 6, pp. 903–909, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Federico, I. L. Simone, V. Lucivero et al., “Proton magnetic resonance spectroscopy in Parkinson's disease and progressive supranuclear palsy,” Journal of Neurology Neurosurgery and Psychiatry, vol. 62, no. 3, pp. 239–242, 1997. View at Google Scholar · View at Scopus
  36. C. E. Clarke and M. Lowry, “Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes,” European Journal of Neurology, vol. 8, no. 6, pp. 573–577, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Murad, “Cyclic guanosine monophosphate as a mediator of vasodilation,” Journal of Clinical Investigation, vol. 78, no. 1, pp. 1–5, 1986. View at Google Scholar · View at Scopus
  38. J.-L. Hsu, T.-P. Jung, C.-Y. Hsu et al., “Regional CBF changes in Parkinson's disease: a correlation with motor dysfunction,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 9, pp. 1458–1466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. T. R. Melzer, R. Watts, M. R. MacAskill et al., “Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease,” Brain, vol. 134, no. 3, pp. 845–855, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. D. S. Bredt, C. E. Glatt, P. M. Hwang, M. Fotuhi, T. M. Dawson, and S. H. Snyder, “Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase,” Neuron, vol. 7, no. 4, pp. 615–624, 1991. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Przedborski, M. Levivier, H. Jiang et al., “Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine,” Neuroscience, vol. 67, no. 3, pp. 631–647, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Herkenham, M. D. Little, K. Bankiewicz, S.-C. Yang, S. P. Markey, and J. N. Johannessen, “Selective retention of MPP+ within the monoaminergic systems of the primate brain following MPTP administration: an in vivo autoradiographic study,” Neuroscience, vol. 40, no. 1, pp. 133–158, 1991. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Tanaka, Y. Fukuuchi, S. Gomi et al., “Inhibition of nitric oxide synthesis impaires autoregulation of local cerebral blood flow in the rat,” NeuroReport, vol. 4, no. 3, pp. 267–270, 1993. View at Google Scholar · View at Scopus
  44. P. A. T. Kelly, I. M. Ritchie, and G. W. Arbuthnott, “Inhibition of neuronal nitric oxide synthase by 7-nitroindazole: effects upon local cerebral blood flow and glucose use in the rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 15, no. 5, pp. 766–773, 1995. View at Google Scholar · View at Scopus
  45. S.-G. Kim, N. V. Tsekos, and J. Ashe, “Multi-slice perfusion-based functional MRI using the FAIR technique: comparison of CBF and BOLD effects,” NMR in Biomedicine, vol. 10, no. 4-5, pp. 191–196, 1997. View at Google Scholar · View at Scopus
  46. L. R. Frank, E. C. Wong, and R. B. Buxton, “Slice profile effects in adiabatic inversion: application to multislice perfusion imaging,” Magnetic Resonance in Medicine, vol. 38, no. 4, pp. 558–564, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Calamante, D. L. Thomas, G. S. Pell, J. Wiersma, and R. Turner, “Measuring cerebral blood flow using magnetic resonance imaging techniques,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 7, pp. 701–735, 1999. View at Google Scholar · View at Scopus
  48. A. Giovanni, B.-A. Sieber, R. E. Heikkila, and P. K. Sonsalla, “Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine. Part 1: systemic administration,” Journal of Pharmacology and Experimental Therapeutics, vol. 270, no. 3, pp. 1000–1007, 1994. View at Google Scholar · View at Scopus
  49. R. N. Kalaria, M. J. Mitchell, and S. I. Harik, “Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 10, pp. 3521–3525, 1987. View at Google Scholar · View at Scopus
  50. L. M. Sayre, P. K. Arora, L. A. Iacofano, and S. I. Harik, “Comparative toxicity of MPTP, MPP+ and 3,3-dimethyl-MPDP+ to dopaminergic neurons of the rat substantia nigra,” European Journal of Pharmacology, vol. 124, no. 1-2, pp. 171–174, 1986. View at Google Scholar · View at Scopus
  51. K. Castagnoli, S. Palmer, A. Anderson, T. Bueters, and N. Castagnoli Jr., “The neuronal nitric oxide synthase inhibitor 7-nitroindazole also inhibits the monoamine oxidase-B-catalyzed oxidation of 1 -methyl-4-phenyl- 1,2,3,6-tetrahydropyridine,” Chemical Research in Toxicology, vol. 10, no. 4, pp. 364–368, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Thomas, K. S. Saravanan, and K. P. Mohanakumar, “In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole,” Neurochemistry International, vol. 52, no. 6, pp. 990–1001, 2008. View at Publisher · View at Google Scholar · View at Scopus