Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 105280, 7 pages
http://dx.doi.org/10.1155/2014/105280
Research Article

Superoxide Dismutase: A Predicting Factor for Boar Semen Characteristics for Short-Term Preservation

1Clinic for Reproduction and Horses, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
2Clinic for Small Animal Medicine and Surgery, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia

Received 6 December 2013; Revised 31 January 2014; Accepted 1 February 2014; Published 5 March 2014

Academic Editor: Raymond J. Rodgers

Copyright © 2014 Maja Zakošek Pipan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. A. Johnson, K. F. Weitze, P. Fiser, and W. M. C. Maxwell, “Storage of boar semen,” Animal Reproduction Science, vol. 62, no. 1–3, pp. 143–172, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. De Ambrogi, J. Ballester, F. Saravia et al., “Effect of storage in short- and long-term commercial semen extenders on the motility, plasma membrane and chromatin integrity of boar spermatozoa,” International Journal of Andrology, vol. 29, no. 5, pp. 543–552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Rath, R. Bathgate, H. Rodriguez-Martinez, J. Roca, J. Strzezek, and D. Waberski, “Recent advances in boar semen cryopreservation,” Society of Reproduction and Fertility, vol. 66, pp. 51–66, 2009. View at Google Scholar · View at Scopus
  4. W. L. Flowers, “Selection for boar fertility and semen quality—the way ahead,” Reproduction in Domestic Animals, vol. 46, no. 2, pp. 55–58, 2011. View at Google Scholar
  5. A. Kumaresan, G. Kadirvel, K. M. Bujarbaruah et al., “Preservation of boar semen at 18°C induces lipid peroxidation and apoptosis like changes in spermatozoa,” Animal Reproduction Science, vol. 110, no. 1-2, pp. 162–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Bailey, J.-F. Bilodeau, and N. Cormier, “Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon,” Journal of Andrology, vol. 21, no. 1, pp. 1–7, 2000. View at Google Scholar · View at Scopus
  7. S. Cerolini, A. Maldjian, P. Surai, and R. Noble, “Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage,” Animal Reproduction Science, vol. 58, no. 1-2, pp. 99–111, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Brzezinska-Slebodzinska, A. B. Slebodzinski, B. Pietras, and G. Wieczorek, “Antioxidant effect of vitamin E and glutathione on lipid peroxidation in boar semen plasma,” Biological Trace Element Research, vol. 47, no. 1–3, pp. 69–74, 1995. View at Google Scholar · View at Scopus
  9. R. J. Aitken, D. W. Buckingham, A. Carreras, and D. S. Irvine, “Superoxide dismutase in human sperm suspensions: relationship with cellular composition, oxidative stress, and sperm function,” Free Radical Biology and Medicine, vol. 21, no. 4, pp. 495–504, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Koziorowska-Gilun, M. Koziorowski, L. Fraser, and J. Strzezek, “Antioxidant defence system of boar cauda epididymidal spermatozoa and reproductive tract fluids,” Reproduction in Domestic Animals, vol. 46, no. 3, pp. 527–533, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kowalowka, P. Wysocki, L. Fraser, and J. Strzezek, “Extracellular superoxide dismutase of boar seminal plasma,” Reproduction in Domestic Animals, vol. 43, no. 4, pp. 490–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. D. Guthrie and G. R. Welch, “Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry,” Journal of Animal Science, vol. 84, no. 8, pp. 2089–2100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kim, Y.-J. Lee, and Y.-J. Kim, “Changes in sperm membrane and ROS following cryopreservation of liquid boar semen stored at 15°C,” Animal Reproduction Science, vol. 124, no. 1-2, pp. 118–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Schulze, H. Henning, K. Rüdiger, U. Wallner, and D. Waberski, “Temperature management during semen processing: impact on boar semen quality under laboratory and field conditions,” Theriogenology, vol. 80, pp. 990–998, 2013. View at Google Scholar
  15. J. Mrkun, M. Kosec, M. Zakošek, and P. Zrimšek, “Method agreement between measuring of boar sperm concentration using Makler chamber and photometer,” Acta Veterinaria, vol. 57, no. 5-6, pp. 563–572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Pintado, J. de la Fuente, and E. R. S. Roldan, “Permeability of boar and bull spermatozoa to the nucleic acid stains propidium iodide or Hoechst 33258, or to eosin: accuracy in the assessment of cell viability,” Journal of Reproduction and Fertility, vol. 118, no. 1, pp. 145–152, 2000. View at Google Scholar · View at Scopus
  17. A. Kovács and R. H. Foote, “Viability and acrosome staining of bull, boar and rabbit spermatozoa,” Biotechnic & Histochemistry, vol. 67, no. 3, pp. 119–124, 1992. View at Google Scholar · View at Scopus
  18. J. E. Rodríguez-Gil and T. Rigau, “Effects of slight agitation on the quality of refrigerated boar sperm,” Animal Reproduction Science, vol. 39, no. 2, pp. 141–146, 1995. View at Google Scholar · View at Scopus
  19. N. J. Miller, C. Rice-Evans, M. J. Davies, V. Gopinathan, and A. Milner, “A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates,” Clinical Science, vol. 84, no. 4, pp. 407–412, 1993. View at Google Scholar · View at Scopus
  20. J. M. McCord and I. Fridovich, “The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen,” The Journal of Biological Chemistry, vol. 244, no. 22, pp. 6056–6063, 1969. View at Google Scholar · View at Scopus
  21. J. Mrkun, M. Kosec, and P. Zrimšek, “Value of semen parameters, with special reference to tnf-α, in predicting the quality of boar semen after short-term storage,” Acta Veterinaria Hungarica, vol. 61, no. 2, pp. 209–219, 2013. View at Google Scholar
  22. M. Greiner, D. Pfeiffer, and R. D. Smith, “Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests,” Preventive Veterinary Medicine, vol. 45, no. 1-2, pp. 23–41, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Strzezek, F. Saiz-Cidoncha, P. Wysocki, A. Tyszkiewicz, and M. Jastrzebski, “Seminal plasma proteins as markers of biological value of boar semen,” Animal Science Papers and Reports, vol. 20, pp. 255–266, 2002. View at Google Scholar
  24. T. Boonsorn, W. Kongbuntad, N. Narkkong, and W. Aengwanish, “Effects of catechin addition to extender on sperm quality and lipid peroxidation in boar semen,” American-Eurasian Journal of Sustainable Agriculture, vol. 7, pp. 283–288, 2010. View at Google Scholar
  25. T. P. A. Devasagayam, K. K. Boloor, and T. Ramasarma, “Methods for estimating lipid peroxidation: an analysis of merits and demerits,” Indian Journal of Biochemistry and Biophysics, vol. 40, no. 5, pp. 300–308, 2003. View at Google Scholar · View at Scopus
  26. B. J. Awda, M. Mackenzie-Bell, and M. M. Buhr, “Reactive oxygen species and boar sperm function,” Biology of Reproduction, vol. 81, no. 3, pp. 553–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Am-In, R. N. Kirkwood, M. Techakumphu, and W. Tantasuparuk, “Effect of storage for 24 h at 18°C on sperm quality and a comparison of two assays for sperm membrane lipid peroxidation,” Canadian Journal of Animal Science, vol. 90, no. 3, pp. 389–392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Gadea, C. Matás, and X. Lucas, “Prediction of porcine semen fertility by homologous in vitro penetration (hIVP) assay,” Animal Reproduction Science, vol. 54, no. 2, pp. 95–108, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. M. R. F. Mennella and R. Jones, “Properties of spermatozoal superoxide dismutase and lack of involvement of superoxides in metal-ion-catalysed lipid-peroxidation reactions in semen,” Biochemical Journal, vol. 191, no. 2, pp. 289–297, 1980. View at Google Scholar · View at Scopus
  30. S. J. Nair, A. S. Brar, C. S. Ahuja, S. P. S. Sangha, and K. C. Chaudhary, “A comparative study on lipid peroxidation, activities of antioxidant enzymes and viability of cattle and buffalo bull spermatozoa during storage at refrigeration temperature,” Animal Reproduction Science, vol. 96, no. 1-2, pp. 21–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Partyka, E. Łukaszewicz, and W. Nizański, “Effect of cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activity in fowl semen,” Theriogenology, vol. 77, no. 8, pp. 1497–1504, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. J. G. Alvarez, J. C. Touchstone, L. Blasco, and B. T. Storey, “Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity,” Journal of Andrology, vol. 8, no. 5, pp. 338–348, 1987. View at Google Scholar · View at Scopus
  33. M. G. Buffone, J. C. Calamera, S. Brugo-Olmedo et al., “Superoxide dismutase content in sperm correlates with motility recovery after thawing of cryopreserved human spermatozoa,” Fertility and Sterility, vol. 97, no. 2, pp. 293–298, 2012. View at Publisher · View at Google Scholar · View at Scopus