Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 132702, 11 pages
http://dx.doi.org/10.1155/2014/132702
Review Article

Metformin against Cancer Stem Cells through the Modulation of Energy Metabolism: Special Considerations on Ovarian Cancer

1Department of Obstetrics and Gynecology, Korean Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
2Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea
3Biomedical Science Project, Brain Korea 21 Program for Leading Universities & Students, Seoul National University, Seoul 110-799, Republic of Korea
4Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
5Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
6Major in Biomodulation, World Class University, Seoul National University, Seoul 151-921, Republic of Korea

Received 28 February 2014; Accepted 29 May 2014; Published 24 June 2014

Academic Editor: Daisuke Aoki

Copyright © 2014 Tae Hun Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2013,” CA Cancer Journal for Clinicians, vol. 63, no. 1, pp. 11–30, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Akhtar-Danesh, A. Lytwyn, and L. Elit, “Five-year trends in mortality indices among gynecological cancer patients in Canada,” Gynecologic Oncology, vol. 127, no. 3, pp. 620–624, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. R. F. Ozols, B. N. Bundy, B. E. Greer et al., “Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study,” Journal of Clinical Oncology, vol. 21, no. 17, pp. 3194–3200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Wang, C. Li, M. Lin et al., “Ovarian cancer is a heterogeneous disease,” Cancer Genetics and Cytogenetics, vol. 161, no. 2, pp. 170–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. B. Alvero, R. Chen, H.-H. Fu et al., “Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemo-resistance,” Cell Cycle, vol. 8, no. 1, pp. 158–166, 2009. View at Google Scholar · View at Scopus
  6. M. R. Alison, W.-R. Lin, S. M. L. Lim, and L. J. Nicholson, “Cancer stem cells: in the line of fire,” Cancer Treatment Reviews, vol. 38, no. 6, pp. 589–598, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. C. V. Dang, “Links between metabolism and cancer,” Genes and Development, vol. 26, no. 9, pp. 877–890, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Menendez, J. Joven, S. Cufí et al., “The warburg effect version 2.0: metabolic reprogramming of cancer stem cells,” Cell Cycle, vol. 12, no. 8, pp. 1166–1179, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Rattan, R. Ali Fehmi, and A. Munkarah, “Metformin: an emerging new therapeutic option for targeting cancer stem cells and metastasis,” Journal of Oncology, vol. 2012, Article ID 928127, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Bednar and D. M. Simeone, “Metformin and cancer stem cells: old drug, new targets,” Cancer Prevention Research, vol. 5, no. 3, pp. 351–354, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. H. A. Hirsch, D. Iliopoulos, P. N. Tsichlis, and K. Struhl, “Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission,” Cancer Research, vol. 69, pp. 7507–7511, 2009. View at Google Scholar
  12. H. A. Hirsch, D. Iliopoulos, and K. Struhl, “Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 3, pp. 972–977, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Shank, K. Yang, J. Ghannam et al., “Metformin targets ovarian cancer stem cells in vitro and in vivo,” Gynecologic Oncology, vol. 127, no. 2, pp. 390–397, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Pignata, G. Scambia, G. Ferrandina et al., “Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: the MITO-2 randomized phase III trial,” Journal of Clinical Oncology, vol. 29, no. 27, pp. 3628–3635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. J. Kwon and Y. K. Shin, “Regulation of ovarian cancer stem cells or tumor-initiating cells,” International Journal of Molecular Sciences, vol. 14, no. 4, pp. 6624–6648, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. B.-B. S. Zhou, H. Zhang, M. Damelin, K. G. Geles, J. C. Grindley, and P. B. Dirks, “Tumour-initiating cells: challenges and opportunities for anticancer drug discovery,” Nature Reviews Drug Discovery, vol. 8, no. 10, pp. 806–823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Rizzo, J. M. Hersey, P. Mellor et al., “Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2,” Molecular Cancer Therapeutics, vol. 10, no. 2, pp. 325–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Latifi, R. B. Luwor, M. Bilandzic et al., “Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors,” PLoS ONE, vol. 7, no. 10, Article ID e46858, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Abubaker, A. Latifi, R. Luwor et al., “Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden,” Molecular Cancer, vol. 12, no. 1, article 24, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. A. D. Steg, K. S. Bevis, A. A. Katre et al., “Stem cell pathways contribute to clinical chemoresistance in ovarian cancer,” Clinical Cancer Research, vol. 18, no. 3, pp. 869–881, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. N. K. Kurrey, S. P. Jalgaonkar, A. V. Joglekar et al., “Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells,” Stem Cells, vol. 27, no. 9, pp. 2059–2068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Ahmed, K. Abubaker, J. Findlay, and M. Quinn, “Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer,” Current Cancer Drug Targets, vol. 10, no. 3, pp. 268–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Latifi, K. Abubaker, N. Castrechini et al., “Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile,” Journal of Cellular Biochemistry, vol. 112, no. 10, pp. 2850–2864, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Y.-J. Huang, V. Y. Chung, and J. P. Thiery, “Targeting pathways contributing to epithelial-mesenchymal transition (EMT) in epithelial ovarian cancer,” Current Drug Targets, vol. 13, no. 13, pp. 1649–1653, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Ahmed, K. Abubaker, J. Findlay, and M. Quinn, “Cancerous ovarian stem cells: obscure targets for therapy but relevant to chemoresistance,” Journal of Cellular Biochemistry, vol. 114, no. 1, pp. 21–34, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Foster, R. J. Buckanovich, and B. R. Rueda, “Ovarian cancer stem cells: working towards the root of stemness,” Cancer Letters, vol. 338, no. 1, pp. 147–157, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. S. A. Bapat, A. M. Mali, C. B. Koppikar, and N. K. Kurrey, “Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer,” Cancer Research, vol. 65, no. 8, pp. 3025–3029, 2005. View at Google Scholar · View at Scopus
  28. G. Ferrandina, E. Martinelli, M. Petrillo et al., “CD133 antigen expression in ovarian cancer,” BMC Cancer, vol. 9, article 221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Ferrandina, G. Bonanno, L. Pierelli et al., “Expression of CD133-1 and CD133-2 in ovarian cancer,” International Journal of Gynecological Cancer, vol. 18, no. 3, pp. 506–514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M.-Q. Gao, Y.-P. Choi, S. Kang, J. H. Youn, and N.-H. Cho, “CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells,” Oncogene, vol. 29, no. 18, pp. 2672–2680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Zhang, C. Balch, M. W. Chan et al., “Identification and characterization of ovarian cancer-initiating cells from primary human tumors,” Cancer Research, vol. 68, no. 11, pp. 4311–4320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. N. Landen Jr., B. Goodman, A. A. Katre et al., “Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer,” Molecular Cancer Therapeutics, vol. 9, no. 12, pp. 3186–3199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. A. Goodell, S. McKinney-Freeman, and F. D. Camargo, “Isolation and characterization of side population cells,” Methods in Molecular Biology, vol. 290, pp. 343–352, 2005. View at Google Scholar · View at Scopus
  34. I. A. Silva, S. Bai, K. McLean et al., “Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival,” Cancer Research, vol. 71, no. 11, pp. 3991–4001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Burgos-Ojeda, B. R. Rueda, and R. J. Buckanovich, “Ovarian cancer stem cell markers: prognostic and therapeutic implications,” Cancer Letters, vol. 322, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Zhan, C. Wang, and S. Ngai, “Ovarian cancer stem cells: a new target for cancer therapy,” BioMed Research International, vol. 2013, Article ID 916819, 10 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Google Scholar · View at Scopus
  38. D. H. Suh, M. A. Kim, H. Kim et al., “Association of overexpression of hexokinase II with chemoresistance in epithelial ovarian cancer,” Clinical and Experimental Medicine, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Chung, P. P. Dzeja, R. S. Faustino, C. Perez-Terzic, A. Behfar, and A. Terzic, “Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells,” Nature Clinical Practice Cardiovascular Medicine, vol. 4, 1, pp. S60–S67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. C. D. L. Folmes, T. J. Nelson, A. Martinez-Fernandez et al., “Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming,” Cell Metabolism, vol. 14, no. 2, pp. 264–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. A. D. Panopoulos, O. Yanes, S. Ruiz et al., “The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming,” Cell Research, vol. 22, no. 1, pp. 168–177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Zhang, I. Khvorostov, J. S. Hong et al., “UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells,” EMBO Journal, vol. 30, no. 24, pp. 4860–4873, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Zhang, E. Nuebel, G. Q. Daley, C. M. Koehler, and M. A. Teitell, “Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal,” Cell Stem Cell, vol. 11, no. 5, pp. 589–595, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. C. D. Folmes, T. J. Nelson, and A. Terzic, “Energy metabolism in nuclear reprogramming,” Biomarkers in Medicine, vol. 5, no. 6, pp. 715–729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Liao, F. Qian, N. Tchabo et al., “Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism,” PLoS ONE, vol. 9, Article ID e84941, 2014. View at Google Scholar
  46. U. E. Martinez-Outschoorn, M. Prisco, A. Ertel et al., “Ketones and lactate increase cancer cell “stemness”, driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics,” Cell Cycle, vol. 10, no. 8, pp. 1271–1286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. J. M. Heddleston, Z. Li, J. D. Lathia, S. Bao, A. B. Hjelmeland, and J. N. Rich, “Hypoxia inducible factors in cancer stem cells,” British Journal of Cancer, vol. 102, no. 5, pp. 789–795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Strauss, Z.-Y. Li, Y. Liu et al., “Analysis of epithelial and mesenchymal markers in ovarian cancer reveals phenotypic heterogeneity and plasticity,” PLoS ONE, vol. 6, no. 1, Article ID e16186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Abelson, Y. Shamai, L. Berger, R. Shouval, K. Skorecki, and M. Tzukerman, “Intratumoral heterogeneity in the self-renewal and tumorigenic differentiation of ovarian cancer,” Stem Cells, vol. 30, no. 3, pp. 415–424, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Mor, G. Yin, I. Chefetz, Y. Yang, and A. Alvero, “Ovarian cancer stem cells and inflammation,” Cancer Biology and Therapy, vol. 11, no. 8, pp. 708–713, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. K. McLean, Y. Gong, Y. Choi et al., “Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production,” Journal of Clinical Investigation, vol. 121, no. 8, pp. 3206–3219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. J. P. Medema, “Cancer stem cells: the challenges ahead,” Nature Cell Biology, vol. 15, no. 4, pp. 338–344, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. M. G. Kelly, A. B. Alvero, R. Chen et al., “TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer,” Cancer Research, vol. 66, no. 7, pp. 3859–3868, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Chen, A. B. Alvero, D. A. Silasi et al., “Regulation of IKKβ by miR-199a affects NF-κB activity in ovarian cancer cells,” Oncogene, vol. 27, no. 34, pp. 4712–4723, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Cao, M. Shao, J. Schilder, T. Guise, K. S. Mohammad, and D. Matei, “Tissue transglutaminase links TGF-Β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer,” Oncogene, vol. 31, no. 20, pp. 2521–2534, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Pasquier and A. Rafii, “Role of the microenvironment in ovarian cancer stem cell maintenance,” BioMed Research International, vol. 2013, Article ID 630782, 10 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Liang, Y. Ma, J. Liu et al., “The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells,” BMC Cancer, vol. 12, article 201, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. W. K. Chau, C. K. Ip, A. S. C. Mak, H.-C. Lai, and A. S. T. Wong, “C-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling,” Oncogene, vol. 32, no. 22, pp. 2767–2781, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Yin, A. B. Alvero, V. Craveiro et al., “Constitutive proteasomal degradation of TWIST-1 in epithelial-ovarian cancer stem cells impacts differentiation and metastatic potential,” Oncogene, vol. 32, no. 1, pp. 39–49, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Chen, M. C. Nishimura, S. M. Bumbaca et al., “A hierarchy of self-renewing tumor-initiating cell types in glioblastoma,” Cancer Cell, vol. 17, no. 4, pp. 362–375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. P. B. Gupta, C. M. Fillmore, G. Jiang et al., “Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells,” Cell, vol. 146, pp. 633–644, 2011. View at Publisher · View at Google Scholar
  62. D. K. Chan and W. K. Miskimins, “Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures,” Journal of Ovarian Research, vol. 5, no. 1, article 19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Erices, M. L. Bravo, P. Gonzalez et al., “Metformin, at concentrations corresponding to the treatment of diabetes, potentiates the cytotoxic effects of carboplatin in cultures of ovarian cancer cells,” Reproductive Sciences, vol. 20, pp. 1433–1446, 2013. View at Publisher · View at Google Scholar
  64. R. Rattan, R. P. Graham, J. L. Maguire, S. Giri, and V. Shridhar, “Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in Vivo,” Neoplasia, vol. 13, no. 5, pp. 483–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Yasmeen, M.-C. Beauchamp, E. Piura, E. Segal, M. Pollak, and W. H. Gotlieb, “Induction of apoptosis by metformin in epithelial ovarian cancer: involvement of the Bcl-2 family proteins,” Gynecologic Oncology, vol. 121, no. 3, pp. 492–498, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Rattan, S. Giri, L. C. Hartmann, and V. Shridhar, “Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner,” Journal of Cellular and Molecular Medicine, vol. 15, no. 1, pp. 166–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. W. H. Gotlieb, J. Saumet, M.-C. Beauchamp et al., “In vitro metformin anti-neoplastic activity in epithelial ovarian cancer,” Gynecologic Oncology, vol. 110, no. 2, pp. 246–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Iliopoulos, H. A. Hirsch, and K. Struhl, “Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types,” Cancer Research, vol. 71, no. 9, pp. 3196–3201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Prigione, B. Lichtner, H. Kuhl et al., “Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming,” Stem Cells, vol. 29, no. 9, pp. 1338–1348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Vazquez-Martin, L. Vellon, P. M. Quirós et al., “Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells,” Cell Cycle, vol. 11, no. 5, pp. 974–989, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. A.-C. Buckendahl, J. Budczies, O. Fiehn et al., “Prognostic impact of AMP-activated protein kinase expression in ovarian carcinoma: correlation of protein expression and GC/TOF-MS-based metabolomics,” Oncology Reports, vol. 25, no. 4, pp. 1005–1012, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. J.-Y. Lee, I. Jeon, J. W. Kim, Y.-S. Song, J.-M. Yoon, and S. M. Park, “Diabetes mellitus and ovarian cancer risk: a systematic review and meta-analysis of observational studies,” International Journal of Gynecological Cancer, vol. 23, no. 3, pp. 402–412, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Bakhru, R. J. Buckanovich, and J. J. Griggs, “The impact of diabetes on survival in women with ovarian cancer,” Gynecologic Oncology, vol. 121, no. 1, pp. 106–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Jalving, J. A. Gietema, J. D. Lefrandt et al., “Metformin: taking away the candy for cancer?” European Journal of Cancer, vol. 46, no. 13, pp. 2369–2380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. J. M. M. Evans, L. A. Donnelly, A. M. Emslie-Smith, D. R. Alessi, and A. D. Morris, “Metformin and reduced risk of cancer in diabetic patients,” The British Medical Journal, vol. 330, no. 7503, pp. 1304–1305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Kumar, A. Meuter, P. Thapa et al., “Metformin intake is associated with better survival in ovarian cancer: a case-control study,” Cancer, vol. 119, no. 3, pp. 555–562, 2013. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Dilokthornsakul, N. Chaiyakunapruk, W. Termrungruanglert, C. Pratoomsoot, S. Saokeaw, and R. Sruamsiri, “The effects of metformin on ovarian cancer: a systematic review,” International Journal of Gynecological Cancer, vol. 23, pp. 1544–1551, 2013. View at Publisher · View at Google Scholar
  78. M. Pollak, “Insulin and insulin-like growth factor signalling in neoplasia,” Nature Reviews Cancer, vol. 8, no. 12, pp. 915–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Goodwin, K. Pritchard, M. Ennis, M. Clemons, M. Graham, and I. G. Fantus, “Insulin-lowering effects of metformin in women with early breast cancer,” Clinical Breast Cancer, vol. 8, no. 6, pp. 501–505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. M. R. Owen, E. Doran, and A. P. Halestrap, “Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain,” Biochemical Journal, vol. 348, no. 3, pp. 607–614, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. M. N. Pollak, “Investigating metformin for cancer prevention and treatment: the end of the beginning,” Cancer Discovery, vol. 2, no. 9, pp. 778–790, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. J. H. No, Y.-T. Jeon, I.-A. Park et al., “Activation of mTOR signaling pathway associated with adverse prognostic factors of epithelial ovarian cancer,” Gynecologic Oncology, vol. 121, no. 1, pp. 8–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, and F. Andreelli, “Cellular and molecular mechanisms of metformin: an overview,” Clinical Science, vol. 122, no. 6, pp. 253–270, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. R. G. Jones, D. R. Plas, S. Kubek et al., “AMP-activated protein kinase induces a p53-dependent metabolic checkpoint,” Molecular Cell, vol. 18, no. 3, pp. 283–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Buzzai, R. G. Jones, R. K. Amaravadi et al., “Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth,” Cancer Research, vol. 67, no. 14, pp. 6745–6752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. C. Algire, L. Amrein, M. Bazile, S. David, M. Zakikhani, and M. Pollak, “Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo,” Oncogene, vol. 30, no. 10, pp. 1174–1182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. I. B. Sahra, K. Laurent, S. Giuliano et al., “Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells,” Cancer Research, vol. 70, no. 6, pp. 2465–2475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. J.-H. Cheong, E. S. Park, J. Liang et al., “Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models,” Molecular Cancer Therapeutics, vol. 10, no. 12, pp. 2350–2362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Priebe, L. Tan, H. Wahl et al., “Glucose deprivation activates AMPK and induces cell death through modulation of Akt in ovarian cancer cells,” Gynecologic Oncology, vol. 122, no. 2, pp. 389–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. P. S. Tanwar, G. Mohapatra, S. Chiang et al., “Loss of LKB1 and PTEN tumor suppressor genes in the ovarian surface epithelium induces papillary serous ovarian cancer,” Carcinogenesis, vol. 35, no. 3, pp. 546–553, 2013. View at Google Scholar
  91. A. Macciò and C. Madeddu, “Inflammation and ovarian cancer,” Cytokine, vol. 58, no. 2, pp. 133–147, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. C. Ersoy, S. Kiyici, F. Budak et al., “The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients,” Diabetes Research and Clinical Practice, vol. 81, no. 1, pp. 56–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. S. S. Lund, L. Tarnow, C. D. A. Stehouwer et al., “Impact of metformin versus repaglinide on non-glycaemic cardiovascular risk markers related to inflammation and endothelial dysfunction in non-obese patients with type 2 diabetes,” European Journal of Endocrinology, vol. 158, no. 5, pp. 631–641, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. N.-L. Huang, S.-H. Chiang, C.-H. Hsueh, Y.-J. Liang, Y.-J. Chen, and L.-P. Lai, “Metformin inhibits TNF-α-induced IκB kinase phosphorylation, IκB-α degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation,” International Journal of Cardiology, vol. 134, no. 2, pp. 169–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Salminen, J. M. T. Hyttinen, and K. Kaarniranta, “AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan,” Journal of Molecular Medicine, vol. 89, no. 7, pp. 667–676, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. B. Wu, S. Li, L. Sheng et al., “Metformin inhibits the development and metastasis of ovarian cancer,” Oncology Reports, vol. 28, no. 3, pp. 903–908, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Liao, Q. Zhou, Y. Gu, T. Duan, and Y. Feng, “Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway,” Oncology Reports, vol. 27, no. 6, pp. 1873–1878, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. V. Stambolic, J. R. Woodgett, I. G. Fantus, K. I. Pritchard, and P. J. Goodwin, “Utility of metformin in breast cancer treatment, is neoangiogenesis a risk factor?” Breast Cancer Research and Treatment, vol. 114, no. 2, pp. 387–389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. E. Lonardo, M. Cioffi, P. Sancho et al., “Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells,” PLoS ONE, vol. 8, Article ID e76518, 2013. View at Google Scholar