Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 140165, 10 pages
http://dx.doi.org/10.1155/2014/140165
Review Article

Superoxide Dismutase 1 Loss Disturbs Intracellular Redox Signaling, Resulting in Global Age-Related Pathological Changes

1Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
2Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
3Department of Orthopaedics, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan

Received 23 April 2014; Revised 29 July 2014; Accepted 6 August 2014; Published 8 September 2014

Academic Editor: Chi-Feng Hung

Copyright © 2014 Kenji Watanabe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, “The hallmarks of aging,” Cell, vol. 153, no. 6, pp. 1194–1217, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Finkel and N. J. Holbrook, “Oxidants, oxidative stress and the biology of ageing,” Nature, vol. 408, no. 6809, pp. 239–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Okado-Matsumoto and I. Fridovich, “Subcellular distribution of superoxide dismutases (SOD) in rat liver. Cu,Zn-SOD in mitochondria,” The Journal of Biological Chemistry, vol. 276, no. 42, pp. 38388–38393, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Li, T.-T. Huang, E. J. Carlson et al., “Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase,” Nature Genetics, vol. 11, no. 4, pp. 376–381, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Shimizu, H. Nojiri, S. Kawakami, S. Uchiyama, and T. Shirasawa, “Model mice for tissue-specific deletion of the manganese superoxide dismutase gene,” Geriatrics and Gerontology International, vol. 10, supplement 1, pp. S70–S79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Shimizu, H. Nojiri, and T. Shirasawa, “Tissue-specific deletion of manganese superoxide dismutase in mice,” in Systems Biology of Free Radicals and Antioxidants, I. Laher, Ed., pp. 475–487, Springer, Berlin, Germany, 2014. View at Google Scholar
  7. L. M. Carlsson, J. Jonsson, T. Edlund, and S. L. Marklund, “Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 14, pp. 6264–6268, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. A. G. Reaume, J. L. Elliott, E. K. Hoffman et al., “Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury,” Nature Genetics, vol. 13, no. 1, pp. 43–47, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Elchuri, T. D. Oberley, W. Qi et al., “CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life,” Oncogene, vol. 24, no. 3, pp. 367–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T.-T. Huang, M. Yasunami, E. J. Carlson et al., “Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts,” Archives of Biochemistry and Biophysics, vol. 344, no. 2, pp. 424–432, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Murakami, N. Murata, Y. Noda et al., “SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease,” The Journal of Biological Chemistry, vol. 286, no. 52, pp. 44557–44568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Murakami, N. Murata, Y. Noda, K. Irie, T. Shirasawa, and T. Shimizu, “Stimulation of the amyloidogenic pathway by cytoplasmic superoxide radicals in an Alzheimer's disease mouse model,” Bioscience, Biotechnology and Biochemistry, vol. 76, no. 6, pp. 1098–1103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Imamura, S. Noda, K. Hashizume et al., “Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11282–11287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Hashizume, M. Hirasawa, Y. Imamura et al., “Retinal dysfunction and progressive retinal cell death in SOD1-deficient mice,” The American Journal of Pathology, vol. 172, no. 5, pp. 1325–1331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Behndig, K. Karlsson, A. G. Reaume, M.-L. Sentman, and S. L. Marklund, “In vitro photochemical cataract in mice lacking copper-zinc superoxide dismutase,” Free Radical Biology and Medicine, vol. 31, no. 6, pp. 738–744, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Kojima, T. H. Wakamatsu, M. Dogru et al., “Age-related dysfunction of the lacrimal gland and oxidative stress: evidence from the Cu,Zn-superoxide dismutase-1 (Sod1) knockout mice,” The American Journal of Pathology, vol. 180, no. 5, pp. 1879–1896, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. O. M. Ibrahim, M. Dogru, Y. Matsumoto et al., “Oxidative stress induced age dependent meibomian gland dysfunction in cu, zn-superoxide dismutase-1 (Sod1) knockout mice,” PLoS ONE, vol. 9, no. 7, Article ID e99328, 2014. View at Google Scholar
  18. S. L. McFadden, D. Ding, A. G. Reaume, D. G. Flood, and R. J. Salvi, “Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase,” Neurobiology of Aging, vol. 20, no. 1, pp. 1–8, 1999. View at Publisher · View at Google Scholar
  19. K. K. Ohlemiller, S. L. McFadden, D.-L. Ding et al., “Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss,” Audiology and Neuro-Otology, vol. 4, no. 5, pp. 237–246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Iuchi, F. Okada, K. Onuma et al., “Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production,” Biochemical Journal, vol. 402, no. 2, pp. 219–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Nojiri, Y. Saita, D. Morikawa et al., “Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking,” Journal of Bone and Mineral Research, vol. 26, no. 11, pp. 2682–2694, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Morikawa, H. Nojiri, Y. Saita et al., “Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading,” Journal of Bone and Mineral Research, vol. 28, no. 11, pp. 2368–2380, 2013. View at Google Scholar
  23. K. Murakami, J. Inagaki, M. Saito et al., “Skin atrophy in cytoplasmic SOD-deficient mice and its complete recovery using a vitamin C derivative,” Biochemical and Biophysical Research Communications, vol. 382, no. 2, pp. 457–461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Shibuya, K. Kinoshita, and T. Shimizu, “Protective effects of vitamin C derivatives on skin atrophy caused by Sod1 deficiency,” in Handbook of Diet, Nutrition and the Skin, V. R. Preedy, Ed., pp. 351–364, Wageningen Academic, Gelderland, The Netherlands, 2012. View at Google Scholar
  25. F. L. Muller, W. Song, Y. Liu et al., “Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy,” Free Radical Biology and Medicine, vol. 40, no. 11, pp. 1993–2004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Wang, M. Z. Vatamaniuk, C. A. Roneker et al., “Knockouts of SOD1 and GPX1 exert different impacts on murine islet function and pancreatic integrity,” Antioxidants and Redox Signaling, vol. 14, no. 3, pp. 391–401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Muscogiuri, A. B. Salmon, C. Aguayo-Mazzucato et al., “Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function,” Diabetes, vol. 62, no. 12, pp. 4201–4207, 2013. View at Google Scholar
  28. S. Uchiyama, T. Shimizu, and T. Shirasawa, “CuZn-SOD deficiency causes ApoB degradation and induces hepatic lipid accumulation by impaired lipoprotein secretion in mice,” Journal of Biological Chemistry, vol. 281, no. 42, pp. 31713–31719, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Y.-S. Ho, M. Gargano, J. Cao, R. T. Bronson, I. Heimler, and R. J. Hutz, “Reduced fertility in female mice lacking copper-zinc superoxide dismutase,” Journal of Biological Chemistry, vol. 273, no. 13, pp. 7765–7769, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Matzuk, L. Dionne, Q. Guo, T. R. Kumar, and R. M. Lebovitz, “Ovarian function in superoxide dismutase 1 and 2 knockout mice,” Endocrinology, vol. 139, no. 9, pp. 4008–4011, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Noda, K. Ota, T. Shirasawa, and T. Shimizu, “Copper/Zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice,” Biology of Reproduction, vol. 86, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar
  32. G. G. Kovacs, H. Adle-Biassette, I. Milenkovic, S. Cipriani, J. van Scheppingen, and E. Aronica, “Linking pathways in the developing and aging brain with neurodegeneration,” Neuroscience, vol. 269, pp. 152–172, 2014. View at Publisher · View at Google Scholar
  33. M. A. Ansari and S. W. Scheff, “Oxidative stress in the progression of alzheimer disease in the frontal cortex,” Journal of Neuropathology and Experimental Neurology, vol. 69, no. 2, pp. 155–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Ding and D. A. Sullivan, “Aging and dry eye disease,” Experimental Gerontology, vol. 47, no. 7, pp. 483–490, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. B. J. Walters and J. Zuo, “Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration,” Hearing Research, vol. 297, pp. 68–83, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. A. D. Walling and G. M. Dickson, “Hearing loss in older adults,” American Family Physician, vol. 85, no. 12, pp. 1150–1156, 2012. View at Google Scholar
  37. D. E. Coling, K. C. Y. Yu, D. Somand et al., “Effect of SOD1 overexpression on age- and noise-related hearing loss,” Free Radical Biology and Medicine, vol. 34, no. 7, pp. 873–880, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. R. L. Jilka, “The relevance of mouse models for investigating age-related bone loss in humans,” Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 68, no. 10, pp. 1209–1217, 2013. View at Google Scholar
  39. X. Wang, E. A. Gillen, M. C. H. Van Der Meulen, and G. L. Xin, “Knockouts of Se-glutathione peroxidase-1 and Cu,Zn superoxide dismutase exert different impacts on femoral mechanical performance of growing mice,” Molecular Nutrition and Food Research, vol. 52, no. 11, pp. 1334–1339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Morikawa, Y. Itoigawa, and H. Nojiri et al., “Contribution of oxidative stress to the degeneration of rotator cuff entheses,” Journal of Shoulder and Elbow Surgery, vol. 23, no. 5, pp. 628–635, 2014. View at Google Scholar
  41. J. Khavkin and D. A. F. Ellis, “Aging skin: histology, physiology, and pathology,” Facial Plastic Surgery Clinics of North America, vol. 19, no. 2, pp. 229–234, 2011. View at Publisher · View at Google Scholar
  42. E. Kohl, J. Steinbauer, M. Landthaler, and R.-M. Szeimies, “Skin ageing,” Journal of the European Academy of Dermatology and Venereology, vol. 25, no. 8, pp. 873–884, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Watanabe, S. Shibuya, H. Koyama et al., “Sod1 loss induces intrinsic superoxide accumulation leading to p53-mediated growth arrest and apoptosis,” International Journal of Molecular Sciences, vol. 14, no. 6, pp. 10998–11010, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. R. A. Fielding, B. Vellas, W. J. Evans et al., “Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia,” Journal of the American Medical Directors Association, vol. 12, no. 4, pp. 249–256, 2011. View at Publisher · View at Google Scholar
  45. Y. C. Jang, M. S. Lustgarten, Y. Liu et al., “Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration,” FASEB Journal, vol. 24, no. 5, pp. 1376–1390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Zhang, C. Davis, G. K. Sakellariou et al., “CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice,” FASEB Journal, vol. 27, no. 9, pp. 3536–3548, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. G. K. Sakellariou, C. S. Davis, Y. Shi et al., “Neuron-specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD-knockout mice,” The FASEB Journal, vol. 28, no. 4, pp. 1666–1681, 2014. View at Google Scholar
  48. D. Elahi, D. C. Muller, J. M. Egan, R. Andres, J. Veldhuis, and G. S. Meneilly, “Glucose tolerance, glucose utilization and insulin secretion in ageing,” Novartis Foundation Symposium, vol. 242, pp. 222–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Anantharaju, A. Feller, and A. Chedid, “Aging liver: a review,” Gerontology, vol. 48, no. 6, pp. 343–353, 2002. View at Publisher · View at Google Scholar
  50. L. Wang, Z. Jiang, and X. G. Lei, “Knockout of SOD1 alters murine hepatic glycolysis, gluconeogenesis, and lipogenesis,” Free Radical Biology and Medicine, vol. 53, no. 9, pp. 1689–1696, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Kondo, Y. Inai, Y. Sato et al., “Senescence marker protein 30 functions as gluconolactonase in L-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 5723–5728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Kondo, H. Masutomi, Y. Noda et al., “Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis,” FEBS Open Bio, vol. 4, pp. 522–532, 2014. View at Publisher · View at Google Scholar
  53. X. G. Lei, J.-H. Zhu, J. P. McClung, M. Aregullin, and C. A. Roneker, “Mice deficient in Cu,Zn-superoxide dismutase are resistant to acetaminophen toxicity,” Biochemical Journal, vol. 399, no. 3, pp. 455–461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. J.-H. Zhu, X. Zhang, C. A. Roneker et al., “Role of copper,zinc-superoxide dismutase in catalyzing nitrotyrosine formation in murine liver,” Free Radical Biology and Medicine, vol. 45, no. 5, pp. 611–618, 2008. View at Publisher · View at Google Scholar
  55. M. Szafarowska and M. Jerzak, “Ovarian aging and infertility,” Ginekologia Polska, vol. 84, no. 4, pp. 298–304, 2013. View at Google Scholar · View at Scopus
  56. N. Kimura, S. Tsunoda, Y. Iuchi, H. Abe, K. Totsukawa, and J. Fujii, “Intrinsic oxidative stress causes either 2-cell arrest or cell death depending on developmental stage of the embryos from SOD1-deficient mice,” Molecular Human Reproduction, vol. 16, no. 7, pp. 441–451, 2010. View at Publisher · View at Google Scholar
  57. R. M. Colven and S. R. Pinnell, “Topical vitamin C in aging,” Clinics in Dermatology, vol. 14, no. 2, pp. 227–234, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Murakami, N. Murata, Y. Ozawa et al., “Vitamin C restores behavioral deficits and amyloid-β oligomerization without affecting plaque formation in a mouse model of alzheimer's disease,” Journal of Alzheimer's Disease, vol. 26, no. 1, pp. 7–18, 2011. View at Publisher · View at Google Scholar
  59. T. Ikegami, Y.-I. Suzuki, T. Shimizu, K.-I. Isono, H. Koseki, and T. Shirasawa, “Model mice for tissue-specific deletion of the manganese superoxide dismutase (MnSOD) gene,” Biochemical and Biophysical Research Communications, vol. 296, no. 3, pp. 729–736, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. M.-L. Sentman, M. Granström, H. Jakobson, A. Reaume, S. Basu, and S. L. Marklund, “Phenotypes of mice lacking extracellular superoxide dismutase and copper- and zinc-containing superoxide dismutase,” Journal of Biological Chemistry, vol. 281, no. 11, pp. 6904–6909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Fujita, H. Fujishima, K. Takahashi et al., “SOD1, but not SOD3, deficiency accelerates diabetic renal injury in C57BL/6-Ins2Akita diabetic mice,” Metabolism: Clinical and Experimental, vol. 61, no. 12, pp. 1714–1724, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. J.-H. Zhu and X. G. Lei, “Lipopolysaccharide-induced hepatic oxidative injury is not potentiated by knockout of GPX1 and SOD1 in mice,” Biochemical and Biophysical Research Communications, vol. 404, no. 1, pp. 559–563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. S. K. Wang, J. D. Weaver, S. Zhang, and X. G. Lei, “Knockout of SOD1 promotes conversion of selenocysteine to dehydroalanine in murine hepatic GPX1 protein,” Free Radical Biology and Medicine, vol. 51, no. 1, pp. 197–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Ditch and T. T. Paull, “The ATM protein kinase and cellular redox signaling: beyond the DNA damage response,” Trends in Biochemical Sciences, vol. 37, no. 1, pp. 15–22, 2012. View at Publisher · View at Google Scholar
  65. L. Erker, R. Schubert, S. Elchuri et al., “Effect of the reduction of superoxide dismutase 1 and 2 or treatment with α-tocopherol on tumorigenesis in Atm-deficient mice,” Free Radical Biology and Medicine, vol. 41, no. 4, pp. 590–600, 2006. View at Publisher · View at Google Scholar
  66. F. L. Muller, W. Song, Y. C. Jang et al., “Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production,” American Journal of Physiology. Regulatory Integrative and Comparative Physiology, vol. 293, no. 3, pp. R1159–R1168, 2007. View at Publisher · View at Google Scholar
  67. E. S. Han, F. L. Muller, V. I. Pérez et al., “The in vivo gene expression signature of oxidative stress,” Physiol Genomics, vol. 34, no. 1, pp. 112–126, 2008. View at Google Scholar
  68. G. Cenini, R. Sultana, M. Memo, and D. A. Butterfield, “Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer's disease,” Journal of Cellular and Molecular Medicine, vol. 12, no. 3, pp. 987–994, 2008. View at Publisher · View at Google Scholar
  69. S. Zhou, J. S. Greenberger, M. W. Epperly et al., “Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts,” Aging Cell, vol. 7, no. 3, pp. 335–343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Scott, C. Gabrielides, R. K. Davidson et al., “Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease,” Annals of the Rheumatic Diseases, vol. 69, no. 8, pp. 1502–1510, 2010. View at Google Scholar
  71. M. Almeida, “Aging mechanisms in bone,” BoneKEy Reports, vol. 1, article 102, 2012. View at Google Scholar
  72. D. Maggio, M. Barabani, M. Pierandrei et al., “Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1523–1527, 2003. View at Publisher · View at Google Scholar
  73. L. R. Fraga, C. G. Dutra, J. A. Boquett et al., “p53 signaling pathway polymorphisms associated to recurrent pregnancy loss,” Molecular Biology Reports, vol. 41, no. 3, pp. 1871–1877, 2014. View at Google Scholar
  74. C. Tatone, M. C. Carbone, S. Falone et al., “Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells,” Molecular Human Reproduction, vol. 12, no. 11, pp. 655–660, 2006. View at Publisher · View at Google Scholar · View at Scopus