Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 151405, 13 pages
http://dx.doi.org/10.1155/2014/151405
Research Article

Phylogenetic Analysis of Stenotrophomonas spp. Isolates Contributes to the Identification of Nosocomial and Community-Acquired Infections

1Departamento de Pediatria, Faculdade de Medicina da Universidade de São Paulo, Avenida Dr. Enéas Carvalho Aguiar, 647-5° Andar, 05403-900 São Paulo, SP, Brazil
2Hospital Israelita Albert Einstein, 05652-900 São Paulo, SP, Brazil
3Laboratório de Bacteriologia , Instituto Butantan, 05503-900 São Paulo, SP, Brazil

Received 6 February 2014; Accepted 17 March 2014; Published 10 April 2014

Academic Editor: Ana Lucia Nascimento

Copyright © 2014 Vinicius Godoy Cerezer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. P. Ryan, S. Monchy, M. Cardinale et al., “The versatility and adaptation of bacteria from the genus Stenotrophomonas,” Nature Reviews Microbiology, vol. 7, no. 7, pp. 514–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Vasileuskaya-Schulz, S. Kaiser, T. Maier, M. Kostrzewa, and D. Jonas, “Delineation of Stenotrophomonas spp. by multi-locus sequence analysis and MALDI-TOF mass spectrometry,” Systematic and Applied Microbiology, vol. 34, no. 1, pp. 35–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. W. J. Looney, M. Narita, and K. Mühlemann, “Stenotrophomonas maltophilia: an emerging opportunist human pathogen,” The Lancet Infectious Diseases, vol. 9, no. 5, pp. 312–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Brooke, “Stenotrophomonas maltophilia: an emerging global opportunistic pathogen,” Clinical Microbiology Reviews, vol. 25, no. 1, pp. 2–41, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. E. Falagas, A. C. Kastoris, E. K. Vouloumanou, and G. Dimopoulos, “Community-acquired Stenotrophomonas maltophilia infections: a systematic review,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 7, pp. 719–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Nyč and J. Matějková, “Stenotrophomonas maltophilia: significant contemporary hospital pathogen—review,” Folia Microbiologica, vol. 55, no. 3, pp. 286–294, 2010. View at Publisher · View at Google Scholar
  7. Y. T. Chang, C. Y. Lin, P. L. Lu et al., “Stenotrophomonas maltophilia bloodstream infection: comparison between community-onset and hospital-acquired infections,” Journal of Microbiology, Immunology and Infection, vol. 47, no. 1, pp. 28–35, 2014. View at Publisher · View at Google Scholar
  8. J. I. G. Paez and S. F. Costa, “Risk factors associated with mortality of infections caused by Stenotrophomonas maltophilia: a systematic review,” Journal of Hospital Infection, vol. 70, no. 2, pp. 101–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. P. S. Wu, C. Y. Lu, L. Y. Chang et al., “Stenotrophomonas maltophilia bacteremia in pediatric patients—a 10-year analysis,” Journal of Microbiology, Immunology and Infection, vol. 39, no. 2, pp. 144–149, 2006. View at Google Scholar · View at Scopus
  10. M. Mutlu, G. Yilmaz, Y. Aslan, and G. Bayramoĝlu, “Risk factors and clinical characteristics of Stenotrophomonas maltophilia infections in neonates,” Journal of Microbiology, Immunology and Infection, vol. 44, no. 6, pp. 467–472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Fihman, A. le Monnier, S. Corvec et al., “Stenotrophomonas maltophilia—the most worrisome threat among unusual non-fermentative gram-negative bacilli from hospitalized patients: a prospective multicenter study,” Journal of Infection, vol. 64, no. 4, pp. 391–398, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Garazi, C. Singer, J. Tai, and C. C. Ginocchio, “Bloodstream infections caused by Stenotrophomonas maltophilia: a seven-year review,” Journal of Hospital Infection, vol. 81, no. 2, pp. 114–118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. L. C. Crossman, V. C. Gould, J. M. Dow et al., “The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants,” Genome Biology, vol. 9, no. 4, article R74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. B. Sanchez, A. Hernandez, and J. L. Martinez, “Stenotrophomonas maltophilia drug resistance,” Future Microbiology, vol. 4, no. 6, pp. 655–660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. F. Hu, X. Chang, Y. Ye et al., “Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron,” International Journal of Antimicrobial Agents, vol. 37, no. 3, pp. 230–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kaiser, K. Biehler, and D. Jonas, “A Stenotrophomonas maltophilia multilocus sequence typing scheme for inferring population structured,” Journal of Bacteriology, vol. 191, no. 9, pp. 2934–2943, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. J. Maiden, “Multilocus sequence typing of bacteria,” Annual Review of Microbiology, vol. 60, pp. 561–588, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. M. E. Turner and E. J. Feil, “The secret life of the multilocus sequence type,” International Journal of Antimicrobial Agents, vol. 29, no. 2, pp. 129–135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Wiedenbeck and F. M. Cohan, “Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches,” FEMS Microbiology Reviews, vol. 35, no. 5, pp. 957–976, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. M. Liba, F. I. S. Ferrara, G. P. Manfio et al., “Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones,” Journal of Applied Microbiology, vol. 101, no. 5, pp. 1076–1086, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. CLSI—Clinical Laboratory Standard Institute, Performance Standards for Antimicrobial Susceptibility Testing, 15th Information Suplement M100-S15, CLSI, Wayne, Pa, USA, 2005.
  22. A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method,” The American Journal of Clinical Pathology, vol. 45, no. 4, pp. 493–496, 1966. View at Google Scholar · View at Scopus
  23. P. L. Ramos, C. A. Moreira-Filho, S. van Trappen et al., “An MLSA-based online scheme for the rapid identification of Stenotrophomonas isolates,” Memorias do Instituto Oswaldo Cruz, vol. 106, no. 4, pp. 394–399, 2011. View at Google Scholar · View at Scopus
  24. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Google Scholar · View at Scopus
  26. W. Zhang and Z. Sun, “Random local neighbor joining: a new method for reconstructing phylogenetic trees,” Molecular Phylogenetics and Evolution, vol. 47, no. 1, pp. 117–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Molecular Biology and Evolution, vol. 10, no. 3, pp. 512–526, 1993. View at Google Scholar · View at Scopus
  28. K. Tamura, M. Nei, and S. Kumar, “Prospects for inferring very large phylogenies by using the neighbor-joining method,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11030–11035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Rozas, J. C. Sánchez-DelBarrio, X. Messeguer, and R. Rozas, “DnaSP, DNA polymorphism analyses by the coalescent and other methods,” Bioinformatics, vol. 19, no. 18, pp. 2496–2497, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Nei, Molecular Evolutionary Genetics, Columbia University Press, New York, NY, USA, 1987.
  31. M. Nei and J. C. Miller, “A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data,” Genetics, vol. 125, no. 4, pp. 873–879, 1990. View at Google Scholar · View at Scopus
  32. V. C. Gould and M. B. Avison, “SmeDEF-mediated antimicrobial drug resistance in Stenotrophomonas maltophilia clinical isolates having defined phylogenetic relationships,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 6, pp. 1070–1076, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. V. C. Gould, A. Okazaki, and M. B. Avison, “β-Lactam resistance and β-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships,” Journal of Antimicrobial Chemotherapy, vol. 57, no. 2, pp. 199–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. P. Zehr, B. D. Jenkins, S. M. Short, and G. F. Steward, “Nitrogenase gene diversity and microbial community structure: a cross-system comparison,” Environmental Microbiology, vol. 5, no. 7, pp. 539–554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Duc, S. Neuenschwander, H. Rehrauer et al., “Development and experimental validation of a nifH oligonucleotide microarray to study diazotrophic communities in a glacier forefield,” Environmental Microbiology, vol. 11, no. 8, pp. 2179–2189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Steunou, S. I. Jensen, E. Brecht et al., “Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat,” ISME Journal, vol. 2, no. 4, pp. 364–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. E. J. Feil, E. C. Holmes, D. E. Bessen et al., “Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 1, pp. 182–187, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. J. E. Clarridge, “Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases,” Clinical Microbiology Reviews, vol. 17, no. 4, pp. 840–862, 2004. View at Publisher · View at Google Scholar · View at Scopus