Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 157809, 6 pages
http://dx.doi.org/10.1155/2014/157809
Research Article

Shear Wave Elastography: A New Noninvasive Tool to Assess the Intensity of Fibrosis of Irradiated Salivary Glands in Head and Neck Cancer Patients

1Department of Otolaryngology, Head and Neck Surgery, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
2Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
3Great Poland Oncology Center, Department of Electroradiology, Poznan University of Medical Sciences, 15 Garbary Street, 61-866 Poznan, Poland

Received 19 April 2014; Revised 29 June 2014; Accepted 14 July 2014; Published 17 August 2014

Academic Editor: Sotirios Bisdas

Copyright © 2014 Jarosław Kałużny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Wada, N. Uchida, M. Yokokawa, T. Yoshizako, and H. Kitagaki, “Radiation-induced xerostomia: objective evaluation of salivary gland injury using MR sialography,” American Journal of Neuroradiology, vol. 30, no. 1, pp. 53–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. B. Jensen, A. M. L. Pedersen, A. Vissink et al., “A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life,” Supportive Care in Cancer, vol. 18, no. 8, pp. 1039–1060, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. B. Jensen, A. M. L. Pedersen, A. Vissink et al., “A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: management strategies and economic impact,” Supportive Care in Cancer, vol. 18, no. 8, pp. 1061–1079, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. S. Chambers, A. S. Garden, M. S. Kies, and J. W. Martin, “Radiation-induced xerostomia in patients with head and neck cancer: pathogenesis, impact on quality of life, and management,” Head and Neck, vol. 26, no. 9, pp. 796–807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. Nagler, “The enigmatic mechanism of irradiation-induced damage to the major salivary glands,” Oral Diseases, vol. 8, no. 3, pp. 141–146, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. van Holten, J. M. Roesink, C. H. J. Terhaard, and P. M. Braam, “New insights in the vascular supply of the human parotid gland—consequences for parotid gland-sparing irradiation,” Head and Neck, vol. 32, no. 7, pp. 837–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Teymoortash, F. Müller, J. Juricko et al., “Botulinum toxin prevents radiotherapy-induced salivary gland damage,” Oral Oncology, vol. 45, no. 8, pp. 737–739, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. S. S. Bhatia, D. P. Rasalkar, Y. P. Lee et al., “Cystic change in thyroid nodules: a confounding factor for real-time qualitative thyroid ultrasound elastography,” Clinical Radiology, vol. 66, no. 9, pp. 799–807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Kawada, S. Tanaka, H. Uehara et al., “Feasibility of second-generation transabdominal ultrasound-elastography to evaluate solid pancreatic tumors: preliminary report of 36 cases,” Pancreas, vol. 41, no. 6, pp. 978–980, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Evans, P. Whelehan, K. Thomson et al., “Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification,” British Journal of Cancer, vol. 107, no. 2, pp. 224–229, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Ruchala, E. Szczepanek, and J. Sowinski, “Sonoelastography in de Quervain thyroiditis,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 2, pp. 289–290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. X. P. Ye, H. T. Ran, J. Cheng et al., “Liver and spleen stiffness measured by acoustic radiation force impulse elastography for noninvasive assessment of liver fibrosis and esophageal varices in patients with chronic hepatitis B,” Journal of Ultrasound in Medicine, vol. 31, no. 8, pp. 1245–1253, 2012. View at Google Scholar · View at Scopus
  13. P. Zengel, F. Schrötzlmair, F. Schwarz et al., “Elastography: a new diagnostic tool for evaluation of obstructive diseases of the salivary glands; primary results,” Clinical Hemorheology and Microcirculation, vol. 50, no. 1-2, pp. 91–99, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Ferraioli, C. Tinelli, B. Dal Bello, M. Zicchetti, G. Filice, and C. Filice, “Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study,” Hepatology, vol. 56, no. 6, pp. 2125–2133, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. K. S. S. Bhatia, C. C. M. Cho, C. S. L. Tong, Y. Y. P. Lee, E. H. Y. Yuen, and A. T. Ahuja, “Shear wave elastography of focal salivary gland lesions: preliminary experience in a routine head and neck US clinic,” European Radiology, vol. 22, no. 5, pp. 957–965, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Dumitriu, S. Dudea, C. Botar-Jid, M. Bǎciuţ, and G. Bǎciuť, “Real-time sonoelastography of major salivary gland tumors,” American Journal of Roentgenology, vol. 197, no. 5, pp. W924–W930, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Klintworth, K. Mantsopoulos, J. Zenk, G. Psychogios, H. Iro, and A. Bozzato, “Sonoelastography of parotid gland tumours: initial experience and identification of characteristic patterns,” European Radiology, vol. 22, no. 5, pp. 947–956, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Westerland and D. Howlett, “Sonoelastography techniques in the evaluation and diagnosis of parotid neoplasms,” European Radiology, vol. 22, no. 5, pp. 966–969, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Dirix, S. Nuyts, V. V. Poorten, P. Delaere, and W. van den Bogaert, “The influence of xerostomia after radiotherapy on quality of life: results of a questionnaire in head and neck cancer,” Supportive Care in Cancer, vol. 16, no. 2, pp. 171–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Kan, K. Kodani, K. Michimoto, S. Fujii, and T. Ogawa, “Radiation-induced damage to microstructure of parotid gland: evaluation using high-resolution magnetic resonance imaging,” International Journal of Radiation Oncology, Biology, Physics, vol. 77, no. 4, pp. 1030–1038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Chambers, K. L. Tomsett, I. I. Artopoulou et al., “Salivary flow rates measured during radiation therapy in head and neck cancer patients: a pilot study assessing salivary sediment formation,” Journal of Prosthetic Dentistry, vol. 100, no. 2, pp. 142–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Nömayr, W. Römer, D. Strobel, W. Bautz, and T. Kuwert, “Anatomical accuracy of hybrid SPECT/spiral CT in the lower spine,” Nuclear Medicine Communications, vol. 27, no. 6, pp. 521–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Habu, T. Tanaka, T. Tomoyose et al., “Significance of dynamic magnetic resonance sialography in prognostic evaluation of saline solution irrigation of the parotid gland for the treatment of xerostomia,” Journal of Oral and Maxillofacial Surgery, vol. 68, no. 4, pp. 768–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Astreinidou, J. M. Roesink, C. P. J. Raaijmakers et al., “3D MR sialography as a tool to investigate radiation-induced xerostomia: feasibility study,” International Journal of Radiation Oncology Biology Physics, vol. 68, no. 5, pp. 1310–1319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Kalinowski, J. T. Heverhagen, E. Rehberg, K. J. Klose, and H. Wagner, “Comparative study of MR sialography and digital subtraction sialography for benign salivary gland disorders,” American Journal of Neuroradiology, vol. 23, no. 9, pp. 1485–1492, 2002. View at Google Scholar · View at Scopus
  26. P. Katz, D. M. Hartl, and A. Guerre, “Clinical ultrasound of the salivary glands,” Otolaryngologic Clinics of North America, vol. 42, no. 6, pp. 973–1000, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Zenk, “New therapy for the prevention and prophylactic treatment of acute radiation syndrome,” Expert Opinion on Investigational Drugs, vol. 16, no. 6, pp. 767–770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Ying, K. S. Bhatia, Y. P. Lee et al., “Review of ultrasonography of malignant neck nodes: greyscale, Doppler, contrast enhancement and elastography,” Cancer Imaging, vol. 13, no. 4, pp. 658–669, 2013. View at Google Scholar