Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 157987, 9 pages
http://dx.doi.org/10.1155/2014/157987
Research Article

PHBV/PAM Scaffolds with Local Oriented Structure through UV Polymerization for Tissue Engineering

1Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
2Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
3Biomaterial Research Institute, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
4National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China

Received 28 April 2013; Accepted 21 October 2013; Published 22 January 2014

Academic Editor: Alejandro Comellas

Copyright © 2014 Yu Ke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. G. Griffith and G. Naughton, “Tissue engineering—current challenges and expanding opportunities,” Science, vol. 295, no. 5557, pp. 1009–1014, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. R. Frenkel and P. E. Di Cesare, “Scaffolds for articular cartilage repair,” Annals of Biomedical Engineering, vol. 32, no. 1, pp. 26–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. W. Pouton and S. Akhtar, “Biosynthetic polyhydroxyalkanoates and their potential in drug delivery,” Advanced Drug Delivery Reviews, vol. 18, no. 2, pp. 133–162, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. G. A. van der Walle, G. J. de Koning, R. A. Weusthuis, and G. Eggink, “Properties, modifications and applications of biopolyesters,” Advances in Biochemical Engineering/Biotechnology, vol. 71, pp. 263–291, 2001. View at Google Scholar · View at Scopus
  5. S. F. Williams, D. P. Martin, D. M. Horowitz, and O. P. Peoples, “PHA applications: addressing the price performance issue I. Tissue engineering,” International Journal of Biological Macromolecules, vol. 25, no. 1-3, pp. 111–121, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. G. T. Köse, F. Korkusuz, P. Korkusuz, N. Purali, A. Özkul, and V. Hasirci, “Bone generation on PHBV matrices: an in vitro study,” Biomaterials, vol. 24, no. 27, pp. 4999–5007, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Kumarasuriyar, R. A. Jackson, L. Grøndahl, M. Trau, V. Nurcombe, and S. M. Cool, “Poly(β-hydroxybutyrate-co-β-hydroxyvalerate) supports in vitro osteogenesis,” Tissue Engineering, vol. 11, no. 7-8, pp. 1281–1295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. T. Köse, F. Korkusuz, P. Korkusuz, and V. Hasirci, “In vivo tissue engineering of bone using poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and collagen scaffolds,” Tissue Engineering, vol. 10, no. 7-8, pp. 1234–1250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. C. C. Paula, A. R. P. Silva, A. A. C. Zonari et al., “New approach to human adipose stem cell seeded on PHB-HV scaffolds for bone tissue engineering applications,” International Journal of Artificial Organs, vol. 34, pp. 684–684, 2011. View at Google Scholar
  10. J. Sun, J. Wu, H. Li, and J. Chang, “Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for cartilage tissue engineering,” European Polymer Journal, vol. 41, no. 10, pp. 2443–2449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Ye, P. Hu, M.-X. Ma, Y. Xiang, R.-G. Liu, and X.-W. Shang, “PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering,” Biomaterials, vol. 30, no. 26, pp. 4401–4406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Ricotti, A. Polini, G. G. Genchi et al., “Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds,” Biomedical Materials, vol. 7, no. 3, Article ID 035010, 2012. View at Google Scholar
  13. M. T. Khorasani, S. A. Mirmohammadi, and S. Irani, “Polyhydroxybutyrate (PHB) scaffolds as a model for nerve tissue engineering application: fabrication and in vitro assay,” International Journal of Polymeric Materials, vol. 60, no. 8, pp. 562–575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. D. R. Nisbet, J. S. Forsythe, W. Shen, D. I. Finkelstein, and M. K. Horne, “Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering,” Journal of Biomaterials Applications, vol. 24, no. 1, pp. 7–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. A. Diehl, J. D. Foley, P. F. Nealey, and C. J. Murphy, “Nanoscale topography modulates corneal epithelial cell migration,” Journal of Biomedical Materials Research Part A, vol. 75, no. 3, pp. 603–611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Uto, T. Muroya, M. Okamoto et al., “Design of super-elastic biodegradable scaffolds with longitudinally oriented microchannels and optimization of the channel size for Schwann cell migration,” Science and Technolgy of Advanced Materials, vol. 13, Article ID 064207, 2012. View at Google Scholar
  17. Y. Isobe, T. Kosaka, G. Kuwahara et al., “Oriented collagen scaffolds for tissue engineering,” Materials, vol. 5, no. 3, pp. 501–511, 2012. View at Google Scholar
  18. F. Laco, M. H. Grant, and R. A. Black, “Collagen-nanofiber hydrogel composites promote contact guidance of human lymphatic microvascular endothelial cells and directed capillary tube formation,” Journal of Biomedical Materials Research Part A, vol. 101, no. 6, pp. 1787–1799, 2013. View at Google Scholar
  19. T. P. Driscoll, N. L. Nerurkar, N. T. Jacobs, D. M. Elliott, and R. L. Mauck, “Fiber angle and aspect ratio influence the shear mechanics of oriented electrospun nanofibrous scaffolds,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 8, pp. 1627–1636, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Mizutani, H. Kawato, Y. Maeda et al., “Multiple-type dynamic culture of highly oriented fiber scaffold for ligament regeneration,” Journal of Artificial Organs, vol. 16, no. 1, pp. 49–58, 2013. View at Google Scholar
  21. N. Builles, H. Janin-Manificat, M. Malbouyres et al., “Use of magnetically oriented orthogonal collagen scaffolds for hemi-corneal reconstruction and regeneration,” Biomaterials, vol. 31, no. 32, pp. 8313–8322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. J. Tocce, S. J. Liliensiek, A. H. Broderick et al., “The influence of biomimetic topographical features and the extracellular matrix peptide RGD on human corneal epithelial contact guidance,” Acta Biomaterialia, vol. 9, no. 2, pp. 5040–5051, 2013. View at Google Scholar
  23. S. Chen, X. T. Shi, S. Chinnathambi et al., “Generation of microgrooved silica nanotube membranes with sustained drug delivery and cell contact guidance ability by using a Teflon microfluidic chip,” Science and Technolgy of Advanced Materials, vol. 14, Article ID 015005, 2013. View at Google Scholar
  24. P. Wieringa, I. Tonazzini, S. Micera et al., “Nanotopography induced cntact guidance of the F11 cell line during neuronal differentiation: a neuronal model cell line for tissue scaffold development,” Nanotechnology, vol. 23, no. 27, Article ID 275102, 2012. View at Google Scholar
  25. M. Madaghiele, A. Sannino, I. V. Yannas, and M. Spector, “Collagen-based matrices with axially oriented pores,” Journal of Biomedical Materials Research Part A, vol. 85, no. 3, pp. 757–767, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Stokols and M. H. Tuszynski, “Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury,” Biomaterials, vol. 27, no. 3, pp. 443–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Saglam, A. Perets, A. C. Canver et al., “Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair,” Journal of Molecular Neuroscience, vol. 49, no. 2, pp. 334–346, 2013. View at Google Scholar
  28. Y.-G. Zhang, J.-H. Huang, X.-Y. Hu, Q.-S. Sheng, W. Zhao, and Z.-J. Luo, “Omentum-wrapped scaffold with longitudinally oriented micro-channels promotes axonal regeneration and motor functional recovery in rats,” PLoS ONE, vol. 6, no. 12, Article ID e29184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. Q. Fu, M. N. Rahaman, F. Dogan, and B. S. Bal, “Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure,” Journal of Biomedical Materials Research Part B, vol. 86, no. 1, pp. 125–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Liu, M. N. Rahaman, Q. Fu, and A. P. Tomsia, “Porous and strong bioactive glass (13–93) scaffolds prepared by unidirectional freezing of camphene-based suspensions,” Acta Biomaterialia, vol. 8, no. 1, pp. 415–423, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. C. M. Patist, M. B. Mulder, S. E. Gautier, V. Maquet, R. Jérôme, and M. Oudega, “Freeze-dried poly(D,L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord,” Biomaterials, vol. 25, no. 9, pp. 1569–1582, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Jia, L. Liu, W. Pan et al., “Oriented cartilage extracellular matrix-derived scaffold for cartilage tissue engineering,” Journal of Bioscience and Bioengineering, vol. 113, no. 5, pp. 647–653, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Ke, Y. J. Wang, L. Ren, Q. C. Zhao, and W. Huang, “Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility,” Acta Biomaterialia, vol. 6, no. 4, pp. 1329–1336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Ke, Y. Wang, L. Ren et al., “Photografting polymerization of polyacrylamide on PHBV films (I),” Journal of Applied Polymer Science, vol. 104, no. 6, pp. 4088–4095, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Rånby, “Surface modification and lamination of polymers by photografting,” International Journal of Adhesion and Adhesives, vol. 19, no. 5, pp. 337–343, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. C. M. Agrawal and R. B. Ray, “Biodegradable polymeric scaffolds for musculoskeletal tissue engineering,” Journal of Biomedical Materials Research, vol. 55, no. 2, pp. 141–150, 2001. View at Google Scholar
  37. S. G. Lévesque, R. M. Lim, and M. S. Shoichet, “Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications,” Biomaterials, vol. 26, no. 35, pp. 7436–7446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. W. L. Murphy, R. G. Dennis, J. L. Kileny, and D. J. Mooney, “Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds,” Tissue Engineering, vol. 8, no. 1, pp. 43–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Ke, Y. Wang, and L. Ren, “Surface modification of PHBV scaffolds via UV polymerization to improve hydrophilicity,” Journal of Biomaterials Science, Polymer Edition, vol. 21, no. 12, pp. 1589–1602, 2010. View at Publisher · View at Google Scholar · View at Scopus