Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 159486, 13 pages
http://dx.doi.org/10.1155/2014/159486
Research Article

Nonlinear EEG Decoding Based on a Particle Filter Model

Xi’an Jiaotong University, Qujiang Campus, West Building No. 5, No. 99 YanXiang Road, YanTa District, Xi’an, Shaanxi 710045, China

Received 28 February 2014; Revised 16 April 2014; Accepted 18 April 2014; Published 15 May 2014

Academic Editor: Ting Zhao

Copyright © 2014 Jinhua Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. O'Doherty, M. A. Lebedev, P. J. Ifft et al., “Active tactile exploration using a brain-machine-brain interface,” Nature, vol. 479, no. 7372, pp. 228–231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. T. Clanton, Brain-computer interface control of an anthropomorphic robotic arm [Ph.D. thesis], Massachusetts Institute of Technology, Cambridge, Mass, USA, 2011.
  3. M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz, “Cortical control of a prosthetic arm for self-feeding,” Nature, vol. 453, no. 7198, pp. 1098–1101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Carmena, M. A. Lebedev, R. E. Crist et al., “Learning to control a brain-machine interface for reaching and grasping by primates,” PLoS Biology, vol. 1, no. 2, article e42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. H. Do, P. T. Wang, C. E. King, S. N. Chun, and Z. Nenadic, “Brain-computer interface controlled robotic gait orthosis: a case report,” Journal of NeuroEngineering and Rehabilitation, vol. 10, article 111, 2013. View at Publisher · View at Google Scholar
  6. https://mindwalker-project.eu.
  7. http://www.egr.uh.edu/news/201204/brain-controlled-exoskeleton-one-step-closer-reality.
  8. T. W. Picton, S. Bentin, P. Berg et al., “Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria,” Psychophysiology, vol. 37, no. 2, pp. 127–152, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. J. Kim, M. Grabowecky, K. A. Paller, K. Muthu, and S. Suzuki, “Attention induces synchronization-based response gain in steady-state visual evoked potentials,” Nature Neuroscience, vol. 10, no. 1, pp. 117–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. N.-Y. Liang, P. Saratchandran, G.-B. Huang, and N. Sundararajan, “Classification of mental tasks from EEG signals using extreme learning machine,” International Journal of Neural Systems, vol. 16, no. 1, pp. 29–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. B. Zhao, Q. L. Zhang, and C. Andrzej, “EEG based on asynchronous BCI car navigation system in 3D virtual reality environment,” Chinese Science Bulletin, vol. 53, no. 23, pp. 2888–2895, 2008. View at Google Scholar
  12. V. Logar, I. Škrjanc, A. Belič et al., “Gripping-force identification using EEG and phase-demodulation approach,” Neuroscience Research, vol. 60, no. 4, pp. 389–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Yuan, C. Perdoni, and B. He, “Relationship between speed and EEG activity during imagined and executed hand movements,” Journal of Neural Engineering, vol. 7, no. 2, Article ID 026001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. J. Bradberry, R. J. Gentili, and J. L. Contreras-Vidal, “Decoding three-dimensional hand kinematics from electroencephalographic signals,” in Proceedings of the IEEE Annual International Conference of Engineering in Medicine and Biology Society, pp. 5010–5013, Minneapolis, Minn, USA, 2009. View at Publisher · View at Google Scholar
  15. T. J. Bradberry, R. J. Gentili, and J. L. Contreras-Vidal, “Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals,” Journal of Neuroscience, vol. 30, no. 9, pp. 3432–3437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Presacco, R. Goodman, L. Forrester, and J. L. Contreras-Vidal, “Neural decoding of treadmill walking from noninvasive electroencephalographic signals,” Journal of Neurophysiology, vol. 106, no. 4, pp. 1875–1887, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Wu, A. Shaikhouni, J. P. Donoghue, and M. J. Black, “Closed-loop neural control of cursor motion using a kalman filter,” in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4126–4129, San Francisco, Calif, USA, September 2004. View at Scopus
  18. W. Wu, M. J. Black, D. Mumford, Y. Gao, E. Bienenstock, and J. P. Donoghue, “Modeling and decoding motor cortical activity using a switching Kalman filter,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 933–942, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Wu, J. E. Kulkarni, N. G. Hatsopoulos, and L. Paninski, “Neural decoding of hand motion using a linear state-space model with hidden states,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 4, pp. 370–378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Shpigelman, Y. Singer, R. Paz, and E. Vaadia, “Spikernels: predicting arm movements by embedding population spike rate patterns in inner-product spaces,” Neural Computation, vol. 17, no. 3, pp. 671–690, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Lv, Y. Li, and Z. Gu, “Decoding hand movement velocity from electroencephalogram signals during a drawing task,” BioMedical Engineering Online, vol. 9, article 64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Antelis, L. Montesano, and J. Minguez, “Towards decoding 3D finger trajectories from EEG,” International Journal of Bioelectromagnetism, vol. 13, no. 3, pp. 112–114, 2011. View at Google Scholar
  23. J. M. Antelis, L. Montesano, A. Ramos-Murguialday, N. Birbaumer, and J. Minguez, “On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals,” PloS ONE, vol. 8, no. 4, Article ID e61976, 2013. View at Google Scholar
  24. A. E. Brockwell, A. L. Rojas, and R. E. Kass, “Recursive Bayesian decoding of motor cortical signals by particle filtering,” Journal of Neurophysiology, vol. 91, no. 4, pp. 1899–1907, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Wood, P. Prabhat, J. P. Donoghue, and M. J. Black, “Inferring attentional state and kinematics from motor cortical firing rates,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS '05), pp. 149–152, Shanghai, China, September 2005. View at Scopus
  26. R. C. Kelly and T. S. Lee, “Decoding V1 neuronal activity using particle filtering with volterra kernels,” in Proceeding of Advances in Neural Information Processing Systems, vol. 16, Vancouver, Canada, 2003.
  27. Y. Gao, M. J. Black, E. Bienenstock, S. Shoham, and J. P. Donoghuex, “Probabilistic inference of hand motion from neural activity in motor cortex,” Advances in Neural Information Processing Systems, vol. 14, pp. 221–228, 2002. View at Google Scholar